Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 466(7307): 735-8, 2010 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-20686570

RESUMO

The recently emerged fields of metamaterials and transformation optics promise a family of exciting applications such as invisibility, optical imaging with deeply subwavelength resolution and nanophotonics with the potential for much faster information processing. The possibility of creating optical negative-index metamaterials (NIMs) using nanostructured metal-dielectric composites has triggered intense basic and applied research over the past several years. However, the performance of all NIM applications is significantly limited by the inherent and strong energy dissipation in metals, especially in the near-infrared and visible wavelength ranges. Generally the losses are orders of magnitude too large for the proposed applications, and the reduction of losses with optimized designs seems to be out of reach. One way of addressing this issue is to incorporate gain media into NIM designs. However, whether NIMs with low loss can be achieved has been the subject of theoretical debate. Here we experimentally demonstrate that the incorporation of gain material in the high-local-field areas of a metamaterial makes it possible to fabricate an extremely low-loss and active optical NIM. The original loss-limited negative refractive index and the figure of merit (FOM) of the device have been drastically improved with loss compensation in the visible wavelength range between 722 and 738 nm. In this range, the NIM becomes active such that the sum of the light intensities in transmission and reflection exceeds the intensity of the incident beam. At a wavelength of 737 nm, the negative refractive index improves from -0.66 to -1.017 and the FOM increases from 1 to 26. At 738 nm, the FOM is expected to become macroscopically large, of the order of 10(6). This study demonstrates the possibility of fabricating an optical negative-index metamaterial that is not limited by the inherent loss in its metal constituent.

2.
Opt Express ; 16(2): 1186-95, 2008 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-18542193

RESUMO

Ag permittivity (dielectric function) in coupled strips is different from bulk and has been studied for strips of various dimensions and surface roughness. Arrays of such paired strips exhibit the properties of metamagnetics. The surface roughness does not affect the Ag dielectric function, although it does increase the loss at the plasmon resonances of the coupled strips. The size effect in the imaginary part of the dielectric function is significant for both polarizations of light, parallel and perpendicular to the strips with relatively large A-parameter.


Assuntos
Magnetismo , Modelos Químicos , Óptica e Fotônica/instrumentação , Prata/química , Ressonância de Plasmônio de Superfície/métodos , Simulação por Computador , Propriedades de Superfície
3.
Opt Lett ; 32(12): 1671-3, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17572742

RESUMO

This work is concerned with the experimental demonstration of a dual-band negative index metamaterial. The sample is double negative (showing both a negative effective permeability and a negative effective permittivity) for linearly polarized light with a wavelength between 799 and 818 nm, and the real part of its refractive index is approximately -1.0 at 813 nm. The ratio of -Re(n)/Im(n) is close to 1.3 at 813 nm. For an orthogonal polarization, the same sample also exhibits a negative refractive index in the visible (at 772 nm). The spectroscopic measurements of the material are in good agreement with the results obtained from a finite-element electromagnetic solver for the actual geometry of the fabricated sample at both polarizations.

4.
Opt Express ; 15(3): 1076-83, 2007 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-19532335

RESUMO

A negative permeability in a periodic array of pairs of thin silver strips is demonstrated experimentally for two distinct samples. The effect of the strip surface roughness on negative permeability is evaluated. The first sample, Sample A, is fabricated of thinner strips with a root mean square roughness of 7 nm, while Sample B is made of thicker strips with 3-nm roughness. The real part of permeability, mu', is -1 at a wavelength of 770 nm in Sample A and -1.7 at 725 nm in Sample B. Relative to prototypes simulated with ideal strips, larger strip roughness acts to decrease |mu| by a factor of 7.8 in Sample A versus a factor of 2.4 decrease for Sample B.

5.
Opt Express ; 15(6): 3333-41, 2007 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-19532574

RESUMO

A family of coupled nanostrips with varying dimensions is demonstrated exhibiting optical magnetic responses across the whole visible spectrum, from red to blue. We refer to such a phenomenon as rainbow magnetism. The experimental and analytical studies of such structures provide us with a universal building block and a general recipe for producing controllable optical magnetism for various practical implementations.

6.
Opt Lett ; 30(24): 3356-8, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16389830

RESUMO

A double-periodic array of pairs of parallel gold nanorods is shown to have a negative refractive index in the optical range. Such behavior results from the plasmon resonance in the pairs of nanorods for both the electric and the magnetic components of light. The refractive index is retrieved from direct phase and amplitude measurements for transmission and reflection, which are all in excellent agreement with simulations. Both experiments and simulations demonstrate that a negative refractive index n' approximately -0.3 is achieved at the optical communication wavelength of 1.5 microm using the array of nanorods. The retrieved refractive index critically depends on the phase of the transmitted wave, which emphasizes the importance of phase measurements in finding n'.

7.
Opt Express ; 12(16): 3701-6, 2004 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-19483901

RESUMO

Near-field imaging of an engineered double layer structure in transmission mode has shown enhancement of light intensity through the structure. An array created by an optically thick double layer structure of a total thickness of 165 nm containing twin 50 nm Au layers was imaged using a near-field scanning optical microscope in illumination mode. The resulting transmission image shows an increased local transmission at the position of each particle in the array. This viewable enhancement is due to a nanoantenna effect that is created by a resonant plasmon oscillation between the two layers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...