Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(11)2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31146410

RESUMO

Wireless and power line communications (PLC) are important components of distribution network communication, and have a broad application prospect in the fields of intelligent power consumption and home Internet of Things (IoT). This study mainly analyzes the performance of a dual-hop wireless/power line hybrid fading system employing an amplify-and-forward (AF) relay in terms of outage probability and average bit error rate (BER). The Nakagami-m distribution captures the wireless channel fading; whereas the PLC channel gain is characterized by the Log-normal (LogN) distribution. Moreover, the Bernoulli-Gaussian noise model is used on the noise attached to the PLC channel. Owing to the similarity between LogN and Gamma distributions, the key parameters of probability density function (PDF) with approximate distribution are determined by using moment generating function (MGF) equations, joint optimization of s vectors, and approximation of LogN variable sum. The MGF of the harmonic mean of the dual Gamma distribution variables is derived to evaluate the system performance suitable for any fading parameter m value. Finally, Monte Carlo simulation is used to verify the versatility and accuracy of the proposed method, and the influence of the hybrid fading channel and multidimensional impulse noise parameters on system performance is analyzed.

2.
Nanomaterials (Basel) ; 8(7)2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29958426

RESUMO

Nanoparticles currently in use are challenged in further improving the dielectric strength of insulating oil. There is a great need for a new type of nanoparticle to promote the application of insulating oil-based nanofluids in electric industries. This paper experimentally investigates the effect of nanoparticle morphology on pre-breakdown and breakdown properties of insulating oil-based nanofluids. The positive impulse breakdown voltage of insulating oil can be significantly increased by up to 55.5% by the presence of TiO2 nanorods, up to 1.23 times that of TiO2 nanospheres. Pre-breakdown streamer propagation characteristics reveal that streamer discharge channels turn into a bush-like shape with much denser and shorter branches in the nanofluid with TiO2 nanorods. Moreover, the propagation velocity of streamers is dramatically decreased to 34.7% of that in the insulating oil. The greater improvement of nanorods on the breakdown property can be attributed to the lower distortion of the electric field. Thus, when compared with nanospheres, pre-breakdown streamer propagation of nanofluid is much more suppressed with the addition of nanorods, resulting in a greater breakdown voltage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA