Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3075, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594286

RESUMO

Immune checkpoint blockade (ICB) has improved outcome for patients with metastatic melanoma but not all benefit from treatment. Several immune- and tumor intrinsic features are associated with clinical response at baseline. However, we need to further understand the molecular changes occurring during development of ICB resistance. Here, we collect biopsies from a cohort of 44 patients with melanoma after progression on anti-CTLA4 or anti-PD1 monotherapy. Genetic alterations of antigen presentation and interferon gamma signaling pathways are observed in approximately 25% of ICB resistant cases. Anti-CTLA4 resistant lesions have a sustained immune response, including immune-regulatory features, as suggested by multiplex spatial and T cell receptor (TCR) clonality analyses. One anti-PD1 resistant lesion harbors a distinct immune cell niche, however, anti-PD1 resistant tumors are generally immune poor with non-expanded TCR clones. Such immune poor microenvironments are associated with melanoma cells having a de-differentiated phenotype lacking expression of MHC-I molecules. In addition, anti-PD1 resistant tumors have reduced fractions of PD1+ CD8+ T cells as compared to ICB naïve metastases. Collectively, these data show the complexity of ICB resistance and highlight differences between anti-CTLA4 and anti-PD1 resistance that may underlie differential clinical outcomes of therapy sequence and combination.


Assuntos
Melanoma , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Linfócitos T CD8-Positivos , Receptor de Morte Celular Programada 1 , Receptores de Antígenos de Linfócitos T , Microambiente Tumoral
2.
Front Immunol ; 14: 1130930, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138883

RESUMO

The LIN28B RNA binding protein exhibits an ontogenically restricted expression pattern and is a key molecular regulator of fetal and neonatal B lymphopoiesis. It enhances the positive selection of CD5+ immature B cells early in life through amplifying the CD19/PI3K/c-MYC pathway and is sufficient to reinitiate self-reactive B-1a cell output when ectopically expressed in the adult. In this study, interactome analysis in primary B cell precursors showed direct binding by LIN28B to numerous ribosomal protein transcripts, consistent with a regulatory role in cellular protein synthesis. Induction of LIN28B expression in the adult setting is sufficient to promote enhanced protein synthesis during the small Pre-B and immature B cell stages, but not during the Pro-B cell stage. This stage dependent effect was dictated by IL-7 mediated signaling, which masked the impact of LIN28B through an overpowering stimulation on the c-MYC/protein synthesis axis in Pro-B cells. Importantly, elevated protein synthesis was a distinguishing feature between neonatal and adult B cell development that was critically supported by endogenous Lin28b expression early in life. Finally, we used a ribosomal hypomorphic mouse model to demonstrate that subdued protein synthesis is specifically detrimental for neonatal B lymphopoiesis and the output of B-1a cells, without affecting B cell development in the adult. Taken together, we identify elevated protein synthesis as a defining requirement for early-life B cell development that critically depends on Lin28b. Our findings offer new mechanistic insights into the layered formation of the complex adult B cell repertoire.


Assuntos
Linfócitos B , Células Precursoras de Linfócitos B , Camundongos , Animais
3.
Cell Rep ; 42(2): 112099, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36763502

RESUMO

MLL-rearrangements (MLL-r) are recurrent genetic events in acute myeloid leukemia (AML) and frequently associate with poor prognosis. In infants, MLL-r can be sufficient to drive transformation. However, despite the prenatal origin of MLL-r in these patients, congenital leukemia is very rare with transformation usually occurring postnatally. The influence of prenatal signals on leukemogenesis, such as those mediated by the fetal-specific protein LIN28B, remains controversial. Here, using a dual-transgenic mouse model that co-expresses MLL-ENL and LIN28B, we investigate the impact of LIN28B on AML. LIN28B impedes the progression of MLL-r AML through compromised leukemia-initiating cell activity and suppression of MYB signaling. Mechanistically, LIN28B directly binds to MYBBP1A mRNA, resulting in elevated protein levels of this MYB co-repressor. Functionally, overexpression of MYBBP1A phenocopies the tumor-suppressor effects of LIN28B, while its perturbation omits it. Thereby, we propose that developmentally restricted expression of LIN28B provides a layer of protection against MYB-dependent AML.


Assuntos
Leucemia Mieloide Aguda , Proteína de Leucina Linfoide-Mieloide , Humanos , Camundongos , Animais , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Rearranjo Gênico , Camundongos Transgênicos , Transformação Celular Neoplásica/patologia , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ligação a RNA/genética
4.
Immunity ; 55(10): 1829-1842.e6, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36115337

RESUMO

The adult immune system consists of cells that emerged at various times during ontogeny. We aimed to define the relationship between developmental origin and composition of the adult B cell pool during unperturbed hematopoiesis. Lineage tracing stratified murine adult B cells based on the timing of output, revealing that a substantial portion originated within a restricted neonatal window. In addition to B-1a cells, early-life time-stamped B cells included clonally interrelated IgA plasma cells in the gut and bone marrow. These were actively maintained by B cell memory within gut chronic germinal centers and contained commensal microbiota reactivity. Neonatal rotavirus infection recruited recurrent IgA clones that were distinct from those arising by infection with the same antigen in adults. Finally, gut IgA plasma cells arose from the same hematopoietic progenitors as B-1a cells during ontogeny. Thus, a complex layer of neonatally imprinted B cells confer unique antibody responses later in life.


Assuntos
Imunoglobulina A , Microbiota , Animais , Linfócitos B , Centro Germinativo , Camundongos , Plasmócitos
5.
Blood Adv ; 6(24): 6228-6241, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-35584393

RESUMO

The fetal-to-adult switch in hematopoietic stem cell (HSC) behavior is characterized by alterations in lineage output and entry into deep quiescence. Here we identify the emergence of megakaryocyte (Mk)-biased HSCs as an event coinciding with this developmental switch. Single-cell chromatin accessibility analysis reveals a ubiquitous acquisition of Mk lineage priming signatures in HSCs during the fetal-to-adult transition. These molecular changes functionally coincide with increased amplitude of early Mk differentiation events after acute inflammatory insult. Importantly, we identify LIN28B, known for its role in promoting fetal-like self-renewal, as an insulator against the establishment of an Mk-biased HSC pool. LIN28B protein is developmentally silenced in the third week of life, and its prolonged expression delays emergency platelet output in young adult mice. We propose that developmental regulation of Mk priming may represent a switch for HSCs to toggle between prioritizing self-renewal in the fetus and increased host protection in postnatal life.


Assuntos
Sinais (Psicologia) , Megacariócitos , Animais , Camundongos , Megacariócitos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Plaquetas/metabolismo , Hematopoese
6.
Immunol Rev ; 300(1): 194-202, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33501672

RESUMO

The autoimmune checkpoint during B cell maturation eliminates self-antigen reactive specificities from the mature B cell repertoire. However, an exception to this rule is illustrated by B-1 cells, an innate-like self-reactive B cell subset that is positively selected into the mature B cell pool in a self-antigen-driven fashion. The mechanisms by which B-1 cells escape central tolerance have puzzled the field for decades. A key clue comes from their restricted developmental window during fetal and neonatal life. Here we use B-1 cells as a prototypic early life derived B cell subset to explore developmental changes in the constraints of B cell selection. We discuss recent advancements in the understanding of the molecular program, centered around the RNA binding protein Lin28b, that licenses self-reactive B-1 cell output during ontogeny. Finally, we speculate on the possible link between the unique rules of early life B cell tolerance and the establishment of B cell - microbial mutualism to propose an integrated model for how developmental and environmental cues come together to create a protective layer of B cell memory involved in neonatal immune imprinting.


Assuntos
Subpopulações de Linfócitos B , Especificidade de Anticorpos , Autoantígenos , Linfócitos B , Tolerância Imunológica
7.
Home Healthc Now ; 38(5): 238, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32889990
8.
Immunity ; 53(1): 11-13, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668222

RESUMO

Group A Streptococcus is a common pathogen that elicits a protective humoral response against the cell wall component GlcNAc. In this issue of Immunity, New et al. demonstrate the ability of long-lived B-1 cells to be programmed by microbial colonization and early life immunization to uniquely incorporate GlcNAc reactivity in mice, establishing their critical role in mediating neonatal immune imprinting.


Assuntos
Subpopulações de Linfócitos B , Animais , Subpopulações de Linfócitos B/imunologia , Bactérias , Imunização , Camundongos , Polissacarídeos , Vacinação
9.
Sci Immunol ; 4(39)2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31562190

RESUMO

The ability of B-1 cells to become positively selected into the mature B cell pool, despite being weakly self-reactive, has puzzled the field since its initial discovery. Here, we explore changes in B cell positive selection as a function of developmental time by exploiting a link between CD5 surface levels and the natural occurrence of self-reactive B cell receptors (BCRs) in BCR wild-type mice. We show that the heterochronic RNA binding protein Lin28b potentiates a neonatal mode of B cell selection characterized by enhanced overall positive selection in general and the developmental progression of CD5+ immature B cells in particular. Lin28b achieves this by amplifying the CD19/PI3K/c-Myc positive feedback loop, and ectopic Lin28b expression restores both positive selection and mature B cell numbers in CD19-/- adult mice. Thus, the temporally restricted expression of Lin28b relaxes the rules for B cell selection during ontogeny by modulating tonic signaling. We propose that this neonatal mode of B cell selection represents a cell-intrinsic cue to accelerate the de novo establishment of the adaptive immune system and incorporate a layer of natural antibody-mediated immunity throughout life.


Assuntos
Linfócitos B/imunologia , Proteínas de Ligação a RNA/imunologia , Animais , Camundongos , Camundongos Knockout
10.
Elife ; 72018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30561324

RESUMO

A hallmark of adult hematopoiesis is the continuous replacement of blood cells with limited lifespans. While active hematopoietic stem cell (HSC) contribution to multilineage hematopoiesis is the foundation of clinical HSC transplantation, recent reports have questioned the physiological contribution of HSCs to normal/steady-state adult hematopoiesis. Here, we use inducible lineage tracing from genetically marked adult HSCs and reveal robust HSC-derived multilineage hematopoiesis. This commences via defined progenitor cells, but varies substantially in between different hematopoietic lineages. By contrast, adult HSC contribution to hematopoietic cells with proposed fetal origins is neglible. Finally, we establish that the HSC contribution to multilineage hematopoiesis declines with increasing age. Therefore, while HSCs are active contributors to native adult hematopoiesis, it appears that the numerical increase of HSCs is a physiologically relevant compensatory mechanism to account for their reduced differentiation capacity with age.


Assuntos
Envelhecimento/fisiologia , Diferenciação Celular , Hematopoese , Células-Tronco Hematopoéticas/fisiologia , Fatores Etários , Animais , Linhagem da Célula , Camundongos , Coloração e Rotulagem
11.
Br J Haematol ; 183(4): 588-600, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30596405

RESUMO

Given that FLT3 expression is highly restricted on lymphoid progenitors, it is possible that the established role of FLT3 in the regulation of B and T lymphopoiesis reflects its high expression and role in regulation of lymphoid-primed multipotent progenitors (LMPPs) or common lymphoid progenitors (CLPs). We generated a Flt3 conditional knock-out (Flt3fl/fl) mouse model to address the direct role of FLT3 in regulation of lymphoid-restricted progenitors, subsequent to turning on Rag1 expression, as well as potentially ontogeny-specific roles in B and T lymphopoiesis. Our studies establish a prominent and direct role of FLT3, independently of the established role of FLT3 in regulation of LMPPs and CLPs, in regulation of fetal as well as adult early B cell progenitors, and the early thymic progenitors (ETPs) in adult mice but not in the fetus. Our findings highlight the potential benefit of targeting poor prognosis acute B-cell progenitor leukaemia and ETP leukaemia with recurrent FLT3 mutations using clinical FLT3 inhibitors.


Assuntos
Células da Medula Óssea/metabolismo , Diferenciação Celular , Células Progenitoras Linfoides/metabolismo , Linfopoese , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Tirosina Quinase 3 Semelhante a fms/metabolismo , Animais , Células da Medula Óssea/patologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Células Progenitoras Linfoides/patologia , Camundongos , Camundongos Knockout , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Timo/metabolismo , Timo/patologia , Tirosina Quinase 3 Semelhante a fms/genética
12.
Curr Opin Immunol ; 51: 7-13, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29272734

RESUMO

The adult adaptive immune system is comprised of a wide spectrum of lymphocyte subsets with distinct antigen receptor repertoire profiles, effector functions, turnover times and anatomical locations, acting in concert to provide optimal host protection and self-regulation. While some lymphocyte populations are replenished by bone marrow hematopoietic stem cells (HSCs) through adulthood, others emerge during a limited window of time during fetal and postnatal life and sustain through self-replenishment. Despite fundamental implications in immune regeneration, early life immunity and leukemogenesis, the impact of developmental timing on lymphocyte output remains an under explored frontier in immunology. In this review, we spotlight recent insights into the developmental changes in B cell output in mice and explore how several age specific cellular and molecular factors may shape the formation of a diverse adaptive immune system.


Assuntos
Linfócitos B/citologia , Linfócitos B/fisiologia , Diferenciação Celular , Fatores Etários , Animais , Subpopulações de Linfócitos B/citologia , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Biomarcadores , Medula Óssea/imunologia , Medula Óssea/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Movimento Celular , Seleção Clonal Mediada por Antígeno/imunologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Linfopoese/genética , Linfopoese/imunologia , Fenótipo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
13.
Cell Rep ; 21(11): 3285-3297, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29241553

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) in the fetus and adult possess distinct molecular landscapes that regulate cell fate and change their susceptibility to initiation and progression of hematopoietic malignancies. Here, we applied in-depth quantitative proteomics to comprehensively describe and compare the proteome of fetal and adult HSPCs. Our data uncover a striking difference in complexity of the cellular proteomes, with more diverse adult-specific HSPC proteomic signatures. The differential protein content in fetal and adult HSPCs indicate distinct metabolic profiles and protein complex stoichiometries. Additionally, adult characteristics include an arsenal of proteins linked to viral and bacterial defense, as well as protection against ROS-induced protein oxidation. Further analyses show that interferon α, as well as Neutrophil elastase, has distinct functional effects in fetal and adult HSPCs. This study provides a rich resource aimed toward an enhanced mechanistic understanding of normal and malignant hematopoiesis during fetal and adult life.


Assuntos
Envelhecimento/genética , Regulação da Expressão Gênica no Desenvolvimento , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Proteoma/genética , Fatores Etários , Envelhecimento/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Embrião de Mamíferos , Feto , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Células-Tronco Hematopoéticas/citologia , Interferon-alfa/genética , Interferon-alfa/metabolismo , Elastase de Leucócito/genética , Elastase de Leucócito/metabolismo , Camundongos Endogâmicos C57BL , Proteoma/metabolismo , Proteômica/métodos
14.
Proc Natl Acad Sci U S A ; 114(44): E9328-E9337, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29078319

RESUMO

B cell receptor signaling and downstream NF-κB activity are crucial for the maturation and functionality of all major B cell subsets, yet the molecular players in these signaling events are not fully understood. Here we use several genetically modified mouse models to demonstrate that expression of the multifunctional BRCT (BRCA1 C-terminal) domain-containing PTIP (Pax transactivation domain-interacting protein) chromatin regulator is controlled by B cell activation and potentiates steady-state and postimmune antibody production in vivo. By examining the effects of PTIP deficiency in mice at various ages during ontogeny, we demonstrate that PTIP promotes bone marrow B cell development as well as the neonatal establishment and subsequent long-term maintenance of self-reactive B-1 B cells. Furthermore, we find that PTIP is required for B cell receptor- and T:B interaction-induced proliferation, differentiation of follicular B cells during germinal center formation, and normal signaling through the classical NF-κB pathway. Together with the previously identified role for PTIP in promoting sterile transcription at the Igh locus, the present results establish PTIP as a licensing factor for humoral immunity that acts at several junctures of B lineage maturation and effector cell differentiation by controlling B cell activation.


Assuntos
Subpopulações de Linfócitos B/imunologia , Proteínas de Transporte/imunologia , Cromatina/imunologia , Imunidade Humoral/imunologia , Proteínas Nucleares/imunologia , Animais , Medula Óssea/imunologia , Diferenciação Celular/imunologia , Linhagem da Célula/imunologia , Proliferação de Células/fisiologia , Células Cultivadas , Proteínas de Ligação a DNA , Ativação Linfocitária/imunologia , Camundongos , NF-kappa B/imunologia , Transdução de Sinais/imunologia
15.
Nat Commun ; 8: 14533, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28224997

RESUMO

Ageing associates with significant alterations in somatic/adult stem cells and therapies to counteract these might have profound benefits for health. In the blood, haematopoietic stem cell (HSC) ageing is linked to several functional shortcomings. However, besides the recent realization that individual HSCs might be preset differentially already from young age, HSCs might also age asynchronously. Evaluating the prospects for HSC rejuvenation therefore ultimately requires approaching those HSCs that are functionally affected by age. Here we combine genetic barcoding of aged murine HSCs with the generation of induced pluripotent stem (iPS) cells. This allows us to specifically focus on aged HSCs presenting with a pronounced lineage skewing, a hallmark of HSC ageing. Functional and molecular evaluations reveal haematopoiesis from these iPS clones to be indistinguishable from that associating with young mice. Our data thereby provide direct support to the notion that several key functional attributes of HSC ageing can be reversed.


Assuntos
Envelhecimento/fisiologia , Linhagem da Célula , Senescência Celular , Células Clonais/citologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Linhagem da Célula/genética , Reprogramação Celular/genética , Senescência Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos Endogâmicos C57BL , Linfócitos T/citologia , Linfócitos T/metabolismo
16.
Bio Protoc ; 7(8): e2242, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34541235

RESUMO

Cellular barcoding enables the dissection of clonal dynamics in heterogeneous cell populations through single cell lineage tracing. The labeling of hematopoietic stem and progenitor cells (HSPCs) with unique and heritable DNA barcodes, makes it possible to resolve donor cell heterogeneity in terms of differentiation potential and lineage bias at the single cell level, through subsequent transplantation and high-throughput sequencing. Furthermore, cellular barcoding allows for bona fide hematopoietic stem cells (HSCs) to be defined based on functional rather than immunophenotypic parameters. This protocol describes the work flow of lentiviral cellular barcoding, tracking 14.5 days post coitum (d.p.c.) fetal liver (FL) Lineage-Sca+cKit+ (LSK) HSPCs following long-term reconstitution (Figure 1) ( Kristiansen et al., 2016 ), but can be adapted to the cell type or time frame of choice. Figure 1.Summary of experimental workflow ( Naik et al., 2013 ).

17.
Cell Stem Cell ; 19(6): 673-674, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27912084

RESUMO

Blood development relies on discrete stem and progenitor cell populations with unclear lineage relationships and distinct functional characteristics that change during ontogeny. In this issue of Cell Stem Cell, Beaudin et al. (2016) identify a hematopoietic stem cell population with fetal characteristics that is developmentally restricted yet capable of long-term multi-lineage reconstitution upon transplantation into adult recipients.


Assuntos
Hematopoese , Transplante de Células-Tronco Hematopoéticas , Sangue Fetal , Feto , Células-Tronco Hematopoéticas
18.
Immunity ; 45(2): 346-57, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27533015

RESUMO

Hematopoietic stem cells (HSCs) undergo a functional switch in neonatal mice hallmarked by a decrease in self-renewing divisions and entry into quiescence. Here, we investigated whether the developmental attenuation of B-1a cell output is a consequence of a shift in stem cell state during ontogeny. Using cellular barcoding for in vivo single-cell fate analyses, we found that fetal liver definitive HSCs gave rise to both B-1a and B-2 cells. Whereas B-1a potential diminished in all HSCs with time, B-2 output was maintained. B-1a and B-2 plasticity could be reinitiated in a subset of adult HSCs by ectopic expression of the RNA binding protein LIN28B, a key regulator of fetal hematopoiesis, and this coincided with the clonal reversal to fetal-like elevated self-renewal and repopulation potential. These results anchor the attenuation of B-1a cell output to fetal HSC behavior and demonstrate that the developmental decline in regenerative potential represents a reversible HSC state.


Assuntos
Linfócitos B/fisiologia , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Fígado/fisiologia , Subpopulações de Linfócitos/fisiologia , Animais , Animais Recém-Nascidos , Diferenciação Celular/genética , Plasticidade Celular , Autorrenovação Celular , Células Clonais , Proteínas de Ligação a DNA/genética , Feminino , Hematopoese/genética , Imunofenotipagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas de Ligação a RNA , Análise de Célula Única
19.
Genes Dev ; 30(2): 149-63, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26744420

RESUMO

Class switch recombination (CSR) diversifies antibodies for productive immune responses while maintaining stability of the B-cell genome. Transcription at the immunoglobulin heavy chain (Igh) locus targets CSR-associated DNA damage and is promoted by the BRCT domain-containing PTIP (Pax transactivation domain-interacting protein). Although PTIP is a unique component of the mixed-lineage leukemia 3 (MLL3)/MLL4 chromatin-modifying complex, the mechanisms for how PTIP promotes transcription remain unclear. Here we dissected the minimal structural requirements of PTIP and its different protein complexes using quantitative proteomics in primary lymphocytes. We found that PTIP functions in transcription and CSR separately from its association with the MLL3/MLL4 complex and from its localization to sites of DNA damage. We identified a tandem BRCT domain of PTIP that is sufficient for CSR and identified PA1 as its main functional protein partner. Collectively, we provide genetic and biochemical evidence that a PTIP-PA1 subcomplex functions independently from the MLL3/MLL4 complex to mediate transcription during CSR. These results further our understanding of how multifunctional chromatin-modifying complexes are organized by subcomplexes that harbor unique and distinct activities.


Assuntos
Proteínas de Transporte/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Switching de Imunoglobulina/genética , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Proteínas Nucleares/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA , Regulação da Expressão Gênica/imunologia , Estrutura Molecular , Estrutura Terciária de Proteína , Transporte Proteico
20.
Blood ; 122(6): 1034-41, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23798711

RESUMO

Reactivation of fetal hemoglobin (HbF) holds therapeutic potential for sickle cell disease and ß-thalassemias. In human erythroid cells and hematopoietic organs, LIN28B and its targeted let-7 microRNA family, demonstrate regulated expression during the fetal-to-adult developmental transition. To explore the effects of LIN28B in human erythroid cell development, lentiviral transduction was used to knockdown LIN28B expression in erythroblasts cultured from human umbilical cord CD34+ cells. The subsequent reduction in LIN28B expression caused increased expression of let-7 and significantly reduced HbF expression. Conversely, LIN28B overexpression in cultured adult erythroblasts reduced the expression of let-7 and significantly increased HbF expression. Cellular maturation was maintained including enucleation. LIN28B expression in adult erythroblasts increased the expression of γ-globin, and the HbF content of the cells rose to levels >30% of their hemoglobin. Expression of carbonic anhydrase I, glucosaminyl (N-acetyl) transferase 2, and miR-96 (three additional genes marking the transition from fetal-to-adult erythropoiesis) were reduced by LIN28B expression. The transcription factor BCL11A, a well-characterized repressor of γ-globin expression, was significantly down-regulated. Independent of LIN28B, experimental suppression of let-7 also reduced BCL11A expression and significantly increased HbF expression. LIN28B expression regulates HbF levels and causes adult human erythroblasts to differentiate with a more fetal-like phenotype.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Eritroblastos/citologia , Eritrócitos/citologia , Hemoglobina Fetal/metabolismo , Regulação da Expressão Gênica , Antígenos CD34/metabolismo , Anidrase Carbônica I/metabolismo , Técnicas de Cultura de Células , Sangue Fetal/citologia , Hemoglobina A/metabolismo , Humanos , MicroRNAs/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Fenótipo , Proteínas de Ligação a RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...