Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(13): 10548-10566, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38920289

RESUMO

Developing therapies for the activated B-cell like (ABC) subtype of diffuse large B-cell lymphomas (DLBCL) remains an area of unmet medical need. A subset of ABC DLBCL tumors is driven by activating mutations in myeloid differentiation primary response protein 88 (MYD88), which lead to constitutive activation of interleukin-1 receptor associated kinase 4 (IRAK4) and cellular proliferation. IRAK4 signaling is driven by its catalytic and scaffolding functions, necessitating complete removal of this protein and its escape mechanisms for complete therapeutic suppression. Herein, we describe the identification and characterization of a dual-functioning molecule, KT-413 and show it efficiently degrades IRAK4 and the transcription factors Ikaros and Aiolos. KT-413 achieves concurrent degradation of these proteins by functioning as both a heterobifunctional degrader and a molecular glue. Based on the demonstrated activity and safety of KT-413 in preclinical studies, a phase 1 clinical trial in B-cell lymphomas, including MYD88 mutant ABC DLBCL, is currently underway.


Assuntos
Quinases Associadas a Receptores de Interleucina-1 , Linfoma Difuso de Grandes Células B , Mutação , Fator 88 de Diferenciação Mieloide , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Fator 88 de Diferenciação Mieloide/metabolismo , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Humanos , Animais , Linhagem Celular Tumoral , Descoberta de Drogas , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Camundongos , Imidazóis/química , Imidazóis/farmacologia , Imidazóis/metabolismo , Proteólise/efeitos dos fármacos , Relação Estrutura-Atividade
2.
PLoS Comput Biol ; 20(2): e1011815, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38306397

RESUMO

Clinical imaging modalities are a mainstay of modern disease management, but the full utilization of imaging-based data remains elusive. Aortic disease is defined by anatomic scalars quantifying aortic size, even though aortic disease progression initiates complex shape changes. We present an imaging-based geometric descriptor, inspired by fundamental ideas from topology and soft-matter physics that captures dynamic shape evolution. The aorta is reduced to a two-dimensional mathematical surface in space whose geometry is fully characterized by the local principal curvatures. Disease causes deviation from the smooth bent cylindrical shape of normal aortas, leading to a family of highly heterogeneous surfaces of varying shapes and sizes. To deconvolute changes in shape from size, the shape is characterized using integrated Gaussian curvature or total curvature. The fluctuation in total curvature (δK) across aortic surfaces captures heterogeneous morphologic evolution by characterizing local shape changes. We discover that aortic morphology evolves with a power-law defined behavior with rapidly increasing δK forming the hallmark of aortic disease. Divergent δK is seen for highly diseased aortas indicative of impending topologic catastrophe or aortic rupture. We also show that aortic size (surface area or enclosed aortic volume) scales as a generalized cylinder for all shapes. Classification accuracy for predicting aortic disease state (normal, diseased with successful surgery, and diseased with failed surgical outcomes) is 92.8±1.7%. The analysis of δK can be applied on any three-dimensional geometric structure and thus may be extended to other clinical problems of characterizing disease through captured anatomic changes.


Assuntos
Aorta , Dissecção Aórtica , Humanos , Aorta/diagnóstico por imagem , Aorta/cirurgia , Dissecção Aórtica/diagnóstico por imagem , Dissecção Aórtica/cirurgia
3.
Vector Borne Zoonotic Dis ; 21(12): 961-972, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34665047

RESUMO

Understanding vector-host interactions is crucial for evaluating the role of mosquito species in enzootic cycling and epidemic/epizootic transmission of arboviruses, as well as assessing vertebrate host contributions to maintenance and amplification in different virus foci. To investigate blood-feeding pattern of Culex pipiens, engorged mosquitoes were collected on a weekly basis at 50 sites throughout Suffolk, Virginia, using Centers for Disease Control and Prevention miniature light traps, BG-Sentinel traps, and modified Reiter gravid traps. Vertebrate hosts of mosquitoes were identified by amplifying and sequencing portions of the mitochondrial cytochrome b gene. Of 281 Cx. pipiens bloodmeals successfully identified to species, 255 (90.7%) contained solely avian blood, 13 (4.6%) mammalian, 1 (0.4%) reptilian, and 12 (4.3%) both avian and mammalian blood. Nineteen avian species were identified as hosts for Cx. pipiens with American robin (n = 141, 55.3% of avian hosts) and northern cardinal (n = 57, 22.4%) as the most common hosts. More American robin feedings took place in areas of higher development. Three mammalian species were also identified as hosts for Cx. pipiens with Virginia opossum and domestic cat as the most common hosts in this class (each n = 6, 46.2% of mammalian hosts). There was no significant seasonal difference in the proportion of bloodmeals obtained from avian hosts, but there was a decrease in the proportion of bloodmeals from mammalian hosts from spring to fall. One engorged specimen of Cx. pipiens with Virginia opossum-derived bloodmeal tested positive for West Nile virus (WNV), and another with black-and-white warbler-derived bloodmeal tested positive for eastern equine encephalitis virus. Our findings, in conjunction with the results of vector competence studies and virus isolation from field-collected mosquitoes, lend additional support that Cx. pipiens serves as the principal enzootic vector and potential epizootic/epidemic vector of WNV in southeastern Virginia.


Assuntos
Arbovírus , Doenças do Gato , Culex , Doenças dos Cavalos , Passeriformes , Doenças dos Ovinos , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Gatos , Comportamento Alimentar , Cavalos , Mosquitos Vetores , Ovinos , Virginia/epidemiologia , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterinária
4.
Emerg Infect Dis ; 27(5): 1288-1295, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33900171

RESUMO

Nursing homes house populations that are highly vulnerable to coronavirus disease. Point prevalence surveys (PPSs) provide information on the severe acute respiratory syndrome coronavirus 2 infection status of staff and residents in nursing homes and enable isolation of infectious persons to halt disease spread. We collected 16 weeks of public health surveillance data on a subset of nursing homes (34/212) in Connecticut, USA. We fit a Poisson regression model to evaluate the association between incidence and time since serial PPS onset, adjusting for decreasing community incidence and other factors. Nursing homes conducted a combined total of 205 PPSs in staff and 232 PPSs in residents. PPS was associated with 41%-80% reduction in incidence rate in nursing homes. Our findings provide support for the use of repeated PPSs in nursing home staff and residents, combined with strong infection prevention measures such as cohorting, in contributing to outbreak control.


Assuntos
COVID-19 , SARS-CoV-2 , Connecticut/epidemiologia , Humanos , Casas de Saúde , Prevalência
5.
J Immunol ; 186(4): 2336-43, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21242524

RESUMO

In the absence of core nonhomologous end-joining (NHEJ) factors, Ab gene class-switch recombination (CSR) uses an alternative end-joining (A-EJ) pathway to recombine switch (S) region DNA breaks. Previous reports showing decreased S-junction microhomologies in MSH2-deficient mice and an exonuclease 1 (EXO1) role in yeast microhomology-mediated end joining suggest that mismatch repair (MMR) proteins might influence A-EJ-mediated CSR. We have directly investigated whether MMR proteins collectively or differentially influence the A-EJ mechanism of CSR by analyzing CSR in mice deficient in both XRCC4 and individual MMR proteins. We find CSR is reduced and that Igh locus chromosome breaks are reduced in the MMR/XRCC4 double-deficient B cells compared with B cells deficient in XRCC4 alone, suggesting MMR proteins function upstream of double-strand break formation to influence CSR efficiency in these cells. Our results show that MLH1, EXO1, and MSH2 are all important for efficient A-EJ-mediated CSR, and we propose that MMR proteins convert DNA nicks and point mutations into dsDNA breaks for both C-NHEJ and A-EJ pathways of CSR. We also find Mlh1-XRCC4(-) B cells have an increased frequency of direct S junctions, suggesting that MLH1 proteins may have additional functions that influence A-EJ-mediated CSR.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Subpopulações de Linfócitos B/metabolismo , Reparo do DNA/genética , Proteínas de Ligação a DNA/deficiência , Exodesoxirribonucleases/fisiologia , Switching de Imunoglobulina/genética , Proteína 2 Homóloga a MutS/fisiologia , Proteínas Nucleares/fisiologia , Animais , Células Cultivadas , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Proteínas de Ligação a DNA/genética , Desoxirribonucleases de Sítio Específico do Tipo II , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteína 1 Homóloga a MutL , Mutação Puntual
6.
Cancer Cell ; 17(3): 298-310, 2010 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-20227043

RESUMO

Ovarian cancer is a leading cause of death from gynecologic malignancies. Treatment for advanced-stage disease remains limited and, to date, targeted therapies have been incompletely explored. By systematically suppressing each human tyrosine kinase in ovarian cancer cell lines by RNAi, we found that an autocrine signal-transducing loop involving NRG1 and activated ErbB3 operates in a subset of primary ovarian cancers and ovarian cancer cell lines. Perturbation of this circuit with ErbB3-directed RNAi decreased cell growth in three-dimensional culture and resulted in decreased disease progression and prolonged survival in a xenograft mouse model of ovarian cancer. Furthermore, a monoclonal ErbB3-directed antibody (MM-121) also significantly inhibited tumor growth in vivo. These findings identify ErbB3 as a potential therapeutic target in ovarian cancer.


Assuntos
Proliferação de Células , Neuregulina-1/fisiologia , Neoplasias Ovarianas/patologia , Receptor ErbB-3/fisiologia , Animais , Comunicação Autócrina , Células Cultivadas , Feminino , Humanos , Camundongos , Camundongos Endogâmicos , Neuregulina-1/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Fosforilação , Interferência de RNA , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo , Transdução de Sinais , Transplante Heterólogo
7.
J Immunol ; 183(2): 1222-8, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19553545

RESUMO

The Msh2 mismatch repair (MMR) protein is critical for class switch recombination (CSR) events that occur in mice that lack the Smu tandem repeat (SmuTR) region (SmuTR(-/-) mice). The pattern of microhomology among switch junction sites in Msh2-deficient mice is also dependent on the presence or absence of SmuTR sequences. It is not known whether these CSR effects reflect an individual function of Msh2 or the function of Msh2 within the MMR machinery. In the absence of the SmuTR sequences, Msh2 deficiency nearly ablates CSR. We now show that Mlh1 or Exo1 deficiencies also eliminate CSR in the absence of the SmuTR. Furthermore, in SmuTR(-/-) mice, deficiencies of Mlh1 or Exo1 result in increased switch junction microhomology as has also been seen with Msh2 deficiency. These results are consistent with a CSR model in which the MMR machinery is important in processing DNA nicks to produce double-stranded breaks, particularly in sequences where nicks are infrequent. We propose that double-stranded break paucity in MMR-deficient mice leads to increased use of an alternative joining pathway where microhomologies are important for CSR break ligation. Interestingly, when the SmuTR region is present, deficiency of Msh2 does not lead to the increased microhomology seen with Mlh1 or Exo1 deficiencies, suggesting that Msh2 might have an additional function in CSR. It is also possible that the inability to initiate MMR in the absence of Msh2 results in CSR junctions with less microhomology than joinings that occur when MMR is initiated but then proceeds abnormally due to Mlh1 or Exo1 deficiencies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/deficiência , Exodesoxirribonucleases/deficiência , Switching de Imunoglobulina/genética , Região de Troca de Imunoglobulinas , Proteína 2 Homóloga a MutS/deficiência , Proteínas Nucleares/deficiência , Sequências de Repetição em Tandem , Animais , Linfócitos B/imunologia , Células Cultivadas , Quebras de DNA de Cadeia Dupla , Quebras de DNA de Cadeia Simples , Reparo do DNA , Região de Troca de Imunoglobulinas/genética , Camundongos , Camundongos Knockout , Proteína 1 Homóloga a MutL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA