Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2312908, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38843480

RESUMO

The emergence of solid-state battery technology presents a potential solution to the dissolution challenges of high-capacity small molecule quinone redox systems. Nonetheless, the successful integration of argyrodite-type Li6PS5Cl, the most promising solid-state electrolyte system, and quinone redox systems remains elusive due to their inherent reactivity. Here, a library of quinone derivatives is selected as model electrode materials to ascertain the critical descriptors governing the (electro)chemical compatibility and subsequently the performances of Li6PS5Cl-based solid-state organic lithium metal batteries (LMBs). Compatibility is attained if the lowest unoccupied molecular orbital level of the quinone derivative is sufficiently higher than the highest occupied molecular orbital level of Li6PS5Cl. The energy difference is demonstrated to be critical in ensuring chemical compatibility during composite electrode preparation and enable high-efficiency operation of solid-state organic LMBs. Considering these findings, a general principle is proposed for the selection of quinone derivatives to be integrated with Li6PS5Cl, and two solid-state organic LMBs, based on 2,5-diamino-1,4-benzoquinone and 2,3,5,6-tetraamino-1,4-benzoquinone, are successfully developed and tested for the first time. Validating critical factors for the design of organic battery electrode materials is expected to pave the way for advancing the development of high-efficiency and long cycle life solid-state organic batteries based on sulfides electrolytes.

2.
Adv Mater ; : e2404319, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806164

RESUMO

Lithium-oxygen (Li-O2) batteries, renowned for their high theoretical energy density, have garnered significant interest as prime candidates for future electric device development. However, their actual capacity is often unsatisfactory due to the passivation of active sites by solid-phase discharge products. Optimizing the growth and storage of these products is a crucial step in advancing Li-O2 batteries. Here, a fluorine-doped bimetallic cobalt-nickel oxide (CoNiO2- xFx/CC) with an interlaced catalytic surface (ICS) and a corncob-like structure is proposed as an oxygen electrode. Unlike conventional oxide electrodes with a "single adsorption catalytic mechanism," the ICS of CoNiO2- xFx/CC offers a "competitive adsorption catalytic mechanism," where oxygen sites facilitate oxygen conversion while fluorine sites contribute to the growth of Li2O2. This results in a change in Li2O2 morphology from a surface film to toroidal particles, effectively preventing the burial of active sites. Additionally, the unique open architecture aids in the capture and release of oxygen and the formation of well-contacted Li2O2/electrode interfaces, which benefits the complete decomposition of Li2O2 products. Consequently, the Li-O2 battery with a CoNiO2- xFx/CC cathode demonstrates a high specific capacity of up to 30923 mAh g-1 and a lifespan exceeding 580 cycles, surpassing most reported metal oxide-based cathodes.

3.
ChemSusChem ; : e202400210, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38511253

RESUMO

The electrode interface determines the performance of an electrochemical energy storage system. Using traditional electrolyte organic additives and high-concentration electrolyte emerging recently are two generally strategies for improving the electrode interface. Here, a hybrid-salt electrolyte strategy is proposed for constructing the stable electrode interface. Through the solubilization effect of phosphate ester on LiNO3, a hybrid-salts-based non-flammable phosphate ester electrolyte system (HSPE) with LiPF6 and LiNO3 as Li salts has been developed. By the strong interaction between NO3 - and Li+, the Li+ solvation sheath and solvent behaviors have been modulated, thus the undesirable effects of phosphate ester are eliminated and a robust SEI is formed. Experimental results and theoretical calculations illustrate that NO3 - as a kind of strongly coordinating anion can reduce the number of TEP molecules and lower the reduction reactivity of TEP. The reconfigured Li+ solvation structure allows the formation of an inorganic-rich SEI on the electrode surface. As a result, in the designed HSPE, the average coulombic efficiency of lithium plating/stripping is increased to 99.12 %. This work explored a new approach to construct the electrode interface and addressing the poor interface performance issue of phosphate esters.

4.
Nat Commun ; 15(1): 536, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225282

RESUMO

Rechargeable lithium batteries using 5 V positive electrode materials can deliver considerably higher energy density as compared to state-of-the-art lithium-ion batteries. However, their development remains plagued by the lack of electrolytes with concurrent anodic stability and Li metal compatibility. Here we report a new electrolyte based on dimethyl 2,5-dioxahexanedioate solvent for 5 V-class batteries. Benefiting from the particular chemical structure, weak interaction with lithium cation and resultant peculiar solvation structure, the resulting electrolyte not only enables stable, dendrite-free lithium plating-stripping, but also displays anodic stability up to 5.2 V (vs. Li/Li+), in additive or co-solvent-free formulation, and at low salt concentration of 1 M. Consequently, the Li | |LiNi0.5Mn1.5O4 cells using the 1 M LiPF6 in 2,5-dioxahexanedioate based electrolyte retain >97% of the initial capacity after 250 cycles, outperforming the conventional carbonate-based electrolyte formulations, making this, and potentially other dicarbonate solvents promising for future Lithium-based battery practical explorations.

5.
PNAS Nexus ; 2(9): pgad263, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37674857

RESUMO

Since the introduction of poly(ethylene oxide) (PEO)-based polymer electrolytes more than 50 years, few other real polymer electrolytes with commercial application have emerged. Due to the low ion conductivity at room temperature, the PEO-based electrolytes cannot meet the application requirements. Most of the polymer electrolytes reported in recent years are in fact colloidal/composite electrolytes with plasticizers and fillers, not genuine electrolytes. Herein, we designed and synthesized a cross-linked polymer with a three-dimensional (3D) mesh structure which can dissolve the Li bis(trifluoromethylsulfonyl)imide (LiTFSI) salt better than PEO due to its unique 3D structure and rich oxygen-containing chain segments, thus forming an intrinsic polymer electrolyte (IPE) with ionic conductivity of 0.49 mS cm-1 at room temperature. And it can hinder the migration of large anions (e.g. TFSI-) in the electrolyte and increase the energy barrier to their migration, achieving Li+ migration numbers (tLi+) of up to 0.85. At the same time, IPE has good compatibility with lithium metal cathode and LiFePO4 (LFP) cathode, with stable cycles of more than 2,000 and 700 h in Li//Li symmetric batteries at 0.2 and 0.5 mAh cm-2 current densities, respectively. In addition, the Li/IPE/LFP batteries show the capacity retention >90% after 300 cycles at 0.5 C current density. This polymer electrolyte will be a pragmatic way to achieve commercializing all-solid-state, lithium-based batteries.

6.
Angew Chem Int Ed Engl ; 62(37): e202308726, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37469106

RESUMO

The sluggish kinetics process and shuttling of soluble intermediates present in complex conversion between sulfur and lithium sulfide severely limit the practical application of lithium-sulfur batteries. Herein, by introducing a designated functional organic molecule to couple with polysulfide intermediators, an endogenous prompting mechanism of sulfur conversions has thus been created leading to an alternative sulfur-electrode process, in another words, to build a fast "internal cycle" of promotors that can promote the slow "external cycle" of sulfur conversions. The coupling-intermediators between the functional organic molecule and polysulfides, organophosphorus polysulfides, to be the "promotors" for sulfur conversions, are not only insoluble in the electrolyte but also with higher redox-activity. So the sulfur-electrode process kinetics is greatly improved and the shuttle effect is eliminated simultaneously by this strategy. Meanwhile, with the endogenous prompting mechanism, the morphology of the final discharge product can be modified into a uniform covering film, which is more conducive to its decomposition when charging. Benefiting from the effective mediation of reaction kinetics and control of intermediates solubility, the lithium-sulfur batteries can act out excellent rate performance and cycling stability.

7.
Small Methods ; 7(10): e2300388, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37316995

RESUMO

Highly reversible sodium metal anodes are still regarded as a stubborn hurdle in ester-based electrolytes due to the issue of uncontrollable dendrites and incredibly unstable interphase. Evidently, a strong protective film on sodium is decisive, while the quality of the protective film is mainly determined by its components. However, it is challenging to actively adjust the expected components. This work can regulate the solid electrolyte interphase (SEI) components by introducing a functional electrolyte additive (2-chloro-1,3-dimethylimidazoline hexafluorophosphate (CDIH, namely CDI+ +PF6 - )) into FEC/PC ester-based electrolyte. Specifically, the chloride element in the CDI+ can easily react to form a NaF/NaCl-rich SEI together with the decomposition products of FEC; then the CDI+ without chlorine as a gripper to capture the organic-molecule intermediates generated during FEC decomposition to greatly reduce the content of unstable organic components in SEI, which can be confirmed by molecular dynamic simulation and experiment. Eventually, a highly reversible Na deposition behavior can be delivered. As expected, under the action of CDIH additives, the Na||Na symmetrical cell performs an excellent long-term cycling (>800 h, 0.5 mA cm-2 -0.5 mAh cm-2 ) and rate performance (0.5-4 mA cm-2 ). Furthermore, the Na||PB full cell exhibits the outstanding electrochemical performance with small polarization.

8.
Small ; 19(35): e2300663, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37186219

RESUMO

As a holy grail in electrochemistry, both high-power and high-energy electrochemical energy storage system (EES) has always been a pursued dream. To simultaneously achieve the "both-high" EES, a rational design of structure and composition for storage materials with characteristics of battery-type and capacitor-type storage is crucial. Herein, fluorine-nitrogen co-implanted carbon tubes (FNCT) have been designed, in which plentiful active sites and expanded interlayer space have been created benefiting from the heteroatom engineering and the fluorine-nitrogen synergistic effect, thus the above two-type storage mechanism can get an optimal balance in the FNCT. The implanted fluorine heteroatoms can not only amplify interlayer spacing, but also induce the transformation of nitrogen configuration from pyrrole nitrogen to pyridine nitrogen, further promoting the activity of the carbon matrix. The extraordinary electrochemical performance as results can be witnessed for FNCT, which exhibit fast lithium-ion storage capability with a high energy density of 119.4 Wh kg-1 at an ultrahigh power density of 107.5 kW kg-1 .

9.
Small Methods ; 7(2): e2201289, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36563133

RESUMO

Lithium-oxygen batteries (LOBs) suffer from large charge overpotential and unstable Li metal interface, which can be attributed to the inefficient charge transport at the insulating Li2 O2 /cathode interface and the severe oxygen corrosion issue on the Li anode surface. The use of soluble redox mediators (RMs) can effectively enhance the charge transport between Li2 O2 and cathode, thus greatly reducing the charge overpotential. However, oxidized RMs will also shuttle to the anode side and react with the Li metal, which not only results in the loss of both the RMs and the electrical energy efficiency but also exacerbates the Li anode corrosion. Herein, an organic compound-acetylthiocholine iodide (ATCI), in which a big cation group is contained, is proposed as a defense-donor RM for lithium anode in LOBs to simultaneously address the above issues. During charge, it can accelerate the oxidation kinetics of Li2 O2 via its iodide anion redox couple (I- /I3 - ). Meanwhile, its cation segment (ATC+ ) can move to the anode surface via electric attraction and in situ forms a protective interfacial layer, which prevents the Li anode from the attack of oxidized RM and oxygen species. Consequently, the ATCI-containing LOBs can achieve both a low charge potential (≈3.49 V) and a long cycle life (≈190 cycles).

10.
ACS Appl Mater Interfaces ; 14(49): 54830-54839, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36464840

RESUMO

Sluggish multiphase reaction kinetics and severe shuttle effect of lithium polysulfides (LiPSs) are two major challenges facing lithium-sulfur (Li-S) batteries, which largely prevent them from becoming a reality. Herein, a shell with catalytic function for sulfur cathode is in situ constructed through an ingenious electrochemical oxidative polymerization strategy by introducing hexafluorocyclotriphosphazene (HFPN) as additives, which suppresses the shuttle effect and promotes efficient sulfur conversion. The shell with abundant heteroatoms effectively confines polysulfides to the cathode matrix by chemically interacting with them to eliminate capacity degradation. Moreover, the shell exhibits high catalytic activities, which turns Li2S(2) into an activated state and facilitates its dissociation. The functionalized shell substantially advances the performance of Li-S batteries, thanks to efficient lithium-ion transportation and abundant adsorption-catalytic sites. As a result, Li-S batteries demonstrate superb resistance to self-discharge, ultrastable cycle performance, and greatly enhanced rate capability. Impressively, the batteries show an ultralow capacity decay rate of 0.034% throughout 700 cycles at 2C. They deliver a capacity of 517 mAh g-1 even at a 4C rate, exhibiting relieved electrochemical polarization and excellent sulfur utilization. This work provides an ingenious strategy to construct adsorption-catalytic nets for next-generation Li-S batteries with enhanced lifespan and electrochemical performance.

11.
Adv Mater ; 34(31): e2202898, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35729082

RESUMO

The properties of high theoretical capacity, low cost, and large potential of metallic sodium (Na) has strongly promoted the development of rechargeable sodium-based batteries. However, the issues of infinite volume variation, unstable solid electrolyte interphase (SEI), and dendritic sodium causes a rapid decline in performance and notorious safety hazards. Herein, a highly reversible encapsulation-based sodium storage by designing a functional hollow carbon nanotube with Zn single atom sites embedded in the carbon shell (ZnSA -HCNT) is achieved. The appropriate tube space can encapsulate bulk sodium inside; the inner enriched ZnSA sites provide abundant sodiophilic sites, which can evidently reduce the nucleation barrier of Na deposition. Moreover, the carbon shell derived from ZIF-8 provides geometric constraints and excellent ion/electron transport channels for the rapid transfer of Na+ due to its pore-rich shell, which can be revealed by in situ transmission electron microscopy (TEM). As expected, Na@ZnSA -HCNT anodes present steady long-term performance in symmetrical battery (>900 h at 10 mA cm-2 ). Moreover, superior electrochemical performance of Na@ZnSA -HCNT||PB full cells can be delivered. This work develops a new strategy based on carbon nanotube encapsulation of metallic sodium, which improves the safety and cycling performance of sodium metal anode.

12.
Angew Chem Int Ed Engl ; 61(36): e202207570, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35762740

RESUMO

Glymes are the most widely used electrolyte solvents in lithium-oxygen batteries (LOBs) due to their relatively high stability. However, their associated LOBs have long been plagued by large charge overpotential, which is closely related to the sluggish two-electron Li2 O2 oxidation mechanism. Here, we report a new electrolyte solvent-1,1,3,3-tetramethylurea (TMU) for LOBs with high performance and an alternative mechanism, where a kinetically favorable one-electron Li2 O2 oxidation pathway can happen in the urea electrolyte system, thus leading to a much lower charge overpotential (≈0.51 V) compared to the tetraglyme-based LOBs (≈1.27 V). Besides, TMU also exhibits good stability since it does not contain any α-hydrogen atoms that are vulnerable to be attacked by superoxide species, thus suppressing the hydrogen abstraction side reactions. Consequently, the TMU-based LOBs can stably work for more than 135 cycles, which is four times that of the tetraglyme-based LOBs (≈28 cycles).

13.
Nat Commun ; 13(1): 202, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017484

RESUMO

The redox reactions occurring in the Li-S battery positive electrode conceal various and critical electrocatalytic processes, which strongly influence the performances of this electrochemical energy storage system. Here, we report the development of a single-dispersed molecular cluster catalyst composite comprising of a polyoxometalate framework ([Co4(PW9O34)2]10-) and multilayer reduced graphene oxide. Due to the interfacial charge transfer and exposure of unsaturated cobalt sites, the composite demonstrates efficient polysulfides adsorption and reduced activation energy for polysulfides conversion, thus serving as a bifunctional electrocatalyst. When tested in full Li-S coin cell configuration, the composite allows for a long-term Li-S battery cycling with a capacity fading of 0.015% per cycle after 1000 cycles at 2 C (i.e., 3.36 A g-1). An areal capacity of 4.55 mAh cm-2 is also achieved with a sulfur loading of 5.6 mg cm-2 and E/S ratio of 4.5 µL mg-1. Moreover, Li-S single-electrode pouch cells tested with the bifunctional electrocatalyst demonstrate a specific capacity of about 800 mAh g-1 at a sulfur loading of 3.6 mg cm-2 for 100 cycles at 0.2 C (i.e., 336 mA g-1) with E/S ratio of 5 µL mg-1.

14.
Adv Mater ; 34(7): e2107425, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34866255

RESUMO

A highly soluble Li5 BW12 O40 cluster delivers 2 e- redox reaction with fast electron transfer rates (2.5 × 10-2  cm s-1 ) and high diffusion coefficients (≈2.08 × 10-6 cm2 s-1 ) at mild pH ranging from 3 to 8. In-operando aqueous-flowing Raman spectroscopy and density functional theory calculations reveal that Raman shift changing of {BW12} clusters is due to the bond length changing between W-Ob -W and W-Oc -W at different redox states. The structure changing and redox chemistry of Li5 BW12 O40 are highly reversible, which makes the Li5 BW12 O40 cluster versatile to construct all-anion aqueous redox flow batteries (RFBs). The cation-exchange Nafion membrane will also repel the cross permeability of the anion redox couples. Consequently, by coupling with Li3 K[Fe(CN)6 ] catholyte, the aqueous RFB can be operated at pH 8 with a capacity retention up to 95% and an average Coulombic efficiency more than 99.79% over 300 cycles within 0 to 1.2 V. Meanwhile, Li5 BW12 O40 cluster can also be paired with LiI catholyte to form aqueous RFBs at pH 7 and pH 3, the capacity retention of 94% and 90% can be realized over 300 cycles within 0 to 1.3 V.

15.
Adv Mater ; 33(50): e2005019, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33834550

RESUMO

Polyoxometalates (POMs) are a series of molecular metal oxide clusters, which span the two domains of solutes and solid metal oxides. The unique characters of POMs in structure, geometry, and adjustable redox properties have attracted widespread attention in functional material synthesis, catalysis, electronic devices, and electrochemical energy storage and conversion. This review is focused on the links between the intrinsic charge carrier behaviors of POMs from a chemistry-oriented view and their recent ground-breaking developments in related areas. First, the advantageous charge transfer behaviors of POMs in molecular-level electronic devices are summarized. Solar-driven, thermal-driven, and electrochemical-driven charge carrier behaviors of POMs in energy generation, conversion and storage systems are also discussed. Finally, present challenges and fundamental insights are discussed as to the advanced design of functional systems based upon POM building blocks for their possible emerging application areas.

16.
ACS Appl Mater Interfaces ; 13(14): 16238-16245, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33783193

RESUMO

A freestanding ion membrane with high ionic conductivity, electrochemical compatibility, satisfactory strength, and safety is a goal pursued for advanced energy storage. Geminal dicationic ionic liquids (GDILs) are expected to be designed and synthesized as a basic building block for the target ionic conductors. Herein, we fabricated a GDIL-based flexible ion conductive material, which appears and behaves as a freestanding film, an ion membrane actually, denoted as iMembrane. The iMembrane presented high thermal stability, broad electrochemical stability, and capable ionic conductivity. Stable lithium-ion intercalation/de-intercalation can be achieved at the iMembrane/graphite interface without co-intercalation of imidazole rings, which is attributed to the specific anion-derived solid electrolyte interphase. Moreover, iMembrane is well compatible with the lithium metal anode and LiFePO4 cathode. The soft-packed batteries assembled with iMembrane were punctured with a nail without any fire or smoke. Hence, as an ionic membrane in nonprotonic, iMembrane is promising to enhance safety and energy density of lithium batteries.

17.
ACS Nano ; 14(11): 15884-15893, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33078941

RESUMO

The shuttle effect of dissolved polysulfides produced during the operation of lithium-sulfur batteries is the most serious and fundamental problem among many challenges. We propose a strategy via in situ formation of a functionalized molecule with a dual-terminal coupling function to bind the dissolved polysulfide intermediates, thus turning them back into solid-state organopolysulfide complexes by molecule binding, and then the polysulfides can be pinned on the cathode firmly. The dual-terminal coupling functional molecule binder (MB), which is formed in situ by reaction between quinhydrone (QH) and lithium, can not only bind polysulfides by reversible chemical coordination but also promote the conversion of polysulfides during cycling synchronously. In theory, with the dual-terminal coupling function, MB can bind polysulfide intermediates to copolymerize them, forming -[MB-Li2Sn]- that has faster reaction activity and redox conversion kinetics in comparison with simple Li2Sn. With the MB, the Li-S battery exhibits a large initial capacity of 1347 mAh g-1 at 0.1 C. The remaining capacity of 963 mAh g-1 at 1 C shows no obvious decay for more than 400 cycles, and the retention of the first 300 cycles can reach 96.9%, in particular. This study delivers an alternative approach to resolving the shuttle effect and achieving excellent Li-S battery performance, with the potential significance going way beyond battery systems.

18.
Chemistry ; 25(49): 11432-11436, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31309625

RESUMO

We present strategies to tune the redox properties of polyoxometalate clusters to enhance the electron-coupled proton-buffer-mediated water splitting process, in which the evolution of hydrogen and oxygen can occur in different forms and is separated in time and space. By substituting the heteroatom template in the Keggin-type polyoxometalate cluster, H6 ZnW12 O40 , it is possible to double the number of electrons and protonation in the redox reactions (from two to four). This increase can be achieved with better matching of the energy levels as indicated by the redox potentials, compared to the ones of well-studied H3 PW12 O40 and H4 SiW12 O40 . This means that H6 ZnW12 O40 can act as a high-performance redox mediator in an electrolytic cell for the on-demand generation of hydrogen with a high decoupling efficiency of 95.5 % and an electrochemical energy efficiency of 83.3 %. Furthermore, the H6 ZnW12 O40 cluster also exhibits an excellent cycling behaviour and redox reversibility with almost 100 % H2 -mediated capacity retention during 200 cycles and a high coulombic efficiency >92 % each cycle at 30 mA cm-2 .

19.
ACS Nano ; 12(11): 11120-11129, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30359514

RESUMO

For Li-S batteries, the catalysis for S redox reaction is indispensable. A lot of multifunctional sulfur electrode support materials with have been investigated widely. However, most of these studies were carried out at room temperature, and the interaction between different components in the matrix is not often paid enough attention. Here, we report a graphene supported BN nanosheet composite in which the synergistic effect between BN and graphene greatly enhanced the adsorption for polysulfides, thus leading to excellent performance in a wide temperature range. When used as a host material of sulfur, it can make the Li-S battery apply to a wide range of temperatures, from -40 to 70 °C, delivering a high utilization of sulfur, an excellent rate capability, and outstanding cycling life. The capacity can stabilized at 888 mAh g-1 at 2 C after 300 cycles with a capacity attenuation of <0.04% per cycle at 70 °C, and the battery can deliver a capacity above 650 mAh g-1 at -40 °C.

20.
J Org Chem ; 83(19): 11896-11904, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30189725

RESUMO

Density functional theory calculations are carried out to explore the detail mechanisms of CO2 incorporation into propargylic amine catalyzed by Ag(I)/amine catalysts. Our calculations reveal that the whole reaction involves Lewis acid catalysis and Lewis base catalysis stages, and the outcomes of this reaction critically depend on the basicity of amine. A weaker base (i.e., DABCO) makes the Ag center more acidic, thus favoring the Lewis acid catalysis, resulting in benzoxazin-2-one. However, the following rearrangement of benzoxazin-2-one requires a stronger base (i.e., DBU) to stabilize its deprotonated form. Thus, the product selectivity could be subtly tuned by the choice of amine and the condition control, consistent with the experimental observations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...