Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Shock ; 61(4): 592-600, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37878490

RESUMO

ABSTRACT: Severe burns are associated with massive tissue destruction and cell death where nucleus histones and other damage-associated molecular patterns are released into the circulation and contribute to the pathogenesis of multiple-organ dysfunction. Currently, there is limited information regarding the pathophysiology of extracellular histones after burns, and the mechanisms underlying histone-induced vascular injury are not fully understood. In this study, by comparing the blood samples from healthy donors and burn patients, we confirmed that burn injury promoted the release of extracellular histones into the circulation, evidenced by increased plasma levels of histones correlating with injury severity. The direct effects of extracellular histones on human endothelial monolayers were examined, and the results showed that histones caused cell-cell adherens junction discontinuity and barrier dysfunction in a dose-related manner. Like burn patients, mice subjected to a scald burn covering 25% total body surface area also displayed significantly increased plasma histones. Intravital microscopic analysis of mouse mesenteric microcirculation indicated that treatment with a histone antibody greatly attenuated burn-induced plasma leakage in postcapillary venules, supporting the pathogenic role of extracellular histones in the development of microvascular barrier dysfunction during burns. At the molecular level, intrigued by the recent discovery of C-type lectin domain family 2 member D (Clec2d) as a novel receptor of histones, we tested its potential involvement in the histone interaction with endothelial cells. Indeed, we identified abundant expression of Clec2d in vascular endothelial cells. Further proximity ligation assay demonstrated a close association between extracellular histones and endothelial expressing Clec2d. Functionally, in vivo administration of an anti-Clec2d antibody attenuated burn-induced plasma leakage across mesenteric microvessels. Consistently, Clec2d knockdown in endothelial cells partially inhibited histone-induced endothelial barrier dysfunction. Together, our data suggest that burn injury-induced increases in circulating histones contribute to microvascular leakage and endothelial barrier dysfunction via a mechanism involving the endothelial Clec2d receptor.


Assuntos
Queimaduras , Histonas , Humanos , Camundongos , Animais , Histonas/metabolismo , Células Endoteliais/metabolismo , Lectinas Tipo C/metabolismo , Endotélio Vascular/patologia , Queimaduras/patologia
2.
Methods Mol Biol ; 2711: 1-12, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37776444

RESUMO

The microvascular endothelium has a critical role in regulating the delivery of oxygen, nutrients, and water to the surrounding tissues. Under inflammatory conditions that accompany acute injury or disease, microvascular permeability becomes elevated. When microvascular hyperpermeability becomes uncontrolled or chronic, the excessive escape of plasma proteins into the surrounding tissue disrupts homeostasis and ultimately leads to organ dysfunction. Much remains to be learned about the mechanisms that control microvascular permeability. In addition to in vivo and isolated microvessel methods, the cultured endothelial cell monolayer protocol is an important tool that allows for understanding the specific, endothelial subcellular mechanisms that determine permeability of the endothelium to plasma proteins. In this chapter, two variations of the popular Transwell culture methodology to determine permeability to using fluorescently labeled tracers are presented. The strengths and weaknesses of this approach are also discussed.


Assuntos
Permeabilidade Capilar , Células Endoteliais , Células Endoteliais/metabolismo , Endotélio/metabolismo , Permeabilidade Capilar/fisiologia , Células Cultivadas , Proteínas Sanguíneas/metabolismo , Permeabilidade , Endotélio Vascular/metabolismo
3.
J Neuroinflammation ; 20(1): 127, 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37245027

RESUMO

BACKGROUND: Severe lung infection can lead to brain dysfunction and neurobehavioral disorders. The mechanisms that regulate the lung-brain axis of inflammatory response to respiratory infection are incompletely understood. This study examined the effects of lung infection causing systemic and neuroinflammation as a potential mechanism contributing to blood-brain barrier (BBB) leakage and behavioral impairment. METHODS: Lung infection in mice was induced by instilling Pseudomonas aeruginosa (PA) intratracheally. We determined bacterial colonization in tissue, microvascular leakage, expression of cytokines and leukocyte infiltration into the brain. RESULTS: Lung infection caused alveolar-capillary barrier injury as indicated by leakage of plasma proteins across pulmonary microvessels and histopathological characteristics of pulmonary edema (alveolar wall thickening, microvessel congestion, and neutrophil infiltration). PA also caused significant BBB dysfunction characterized by leakage of different sized molecules across cerebral microvessels and a decreased expression of cell-cell junctions (VE-cadherin, claudin-5) in the brain. BBB leakage peaked at 24 h and lasted for 7 days post-inoculation. Additionally, mice with lung infection displayed hyperlocomotion and anxiety-like behaviors. To test whether cerebral dysfunction was caused by PA directly or indirectly, we measured bacterial load in multiple organs. While PA loads were detected in the lungs up to 7 days post-inoculation, bacteria were not detected in the brain as evidenced by negative cerebral spinal fluid (CSF) cultures and lack of distribution in different brain regions or isolated cerebral microvessels. However, mice with PA lung infection demonstrated increased mRNA expression in the brain of pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-α), chemokines (CXCL-1, CXCL-2) and adhesion molecules (VCAM-1 and ICAM-1) along with CD11b + CD45+ cell recruitment, corresponding to their increased blood levels of white cells (polymorphonuclear cells) and cytokines. To confirm the direct effect of cytokines on endothelial permeability, we measured cell-cell adhesive barrier resistance and junction morphology in mouse brain microvascular endothelial cell monolayers, where administration of IL-1ß induced a significant reduction of barrier function coupled with tight junction (TJ) and adherens junction (AJ) diffusion and disorganization. Combined treatment with IL-1ß and TNFα augmented the barrier injury. CONCLUSIONS: Lung bacterial infection is associated with BBB disruption and behavioral changes, which are mediated by systemic cytokine release.


Assuntos
Barreira Hematoencefálica , Pseudomonas aeruginosa , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Pseudomonas aeruginosa/metabolismo , Doenças Neuroinflamatórias , Citocinas/metabolismo , Pulmão , Fator de Necrose Tumoral alfa/metabolismo
4.
bioRxiv ; 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36747856

RESUMO

Background: Severe lung infection can lead to brain dysfunction and neurobehavioral disorders. The mechanisms that regulate the lung-brain axis of inflammatory response to respiratory infection are incompletely understood. This study examined the effects of lung infection causing systemic and neuroinflammation as a potential mechanism contributing to blood-brain barrier (BBB) leakage and behavioral impairment. Methods: Pneumonia was induced in adult C57BL/6 mice by intratracheal inoculation of Pseudomonas aeruginosa (PA). Solute extravasation, histology, immunofluorescence, RT-PCR, multiphoton imaging and neurological testing were performed in this study. Results: Lung infection caused alveolar-capillary barrier injury as indicated by leakage of plasma proteins across pulmonary microvessels and histopathological characteristics of pulmonary edema (alveolar wall thickening, microvessel congestion, and neutrophil infiltration). PA also caused significant BBB dysfunction characterized by leakage of different sized molecules across cerebral microvessels and a decreased expression of cell-cell junctions (VE-cadherin, claudin-5) in the brain. BBB leakage peaked at 24 hours and lasted for 7 days post-inoculation. Additionally, mice with lung infection displayed hyperlocomotion and anxiety-like behaviors. To test whether cerebral dysfunction was caused by PA directly or indirectly, we measured bacterial load in multiple organs. While PA loads were detected in the lungs up to 7 days post-inoculation, bacteria were not detected in the brain as evidenced by negative cerebral spinal fluid (CSF) cultures and lack of distribution in different brain regions or isolated cerebral microvessels. However, mice with PA lung infection demonstrated increased mRNA expression in the brain of pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-α), chemokines (CXCL-1, CXCL-2) and adhesion molecules (VCAM-1 and ICAM-1) along with CD11b+ cell recruitment, corresponding to their increased blood levels of white cells (polymorphonuclear cells) and cytokines. To confirm the direct effect of cytokines on endothelial permeability, we measured cell-cell adhesive barrier resistance and junction morphology in mouse brain microvascular endothelial cell monolayers, where administration of IL-1ß induced a significant reduction of barrier function coupled with tight junction (TJ) diffusion and disorganization. Combined treatment with IL-1ß and TNFα augmented the barrier injury. Conclusions: These results suggest that lung bacterial infection causes cerebral microvascular leakage and neuroinflammation via a mechanism involving cytokine-induced BBB injury.

5.
Immunol Lett ; 254: 41-53, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36740099

RESUMO

The phagocytosis and clearance of dying cells by macrophages, a process termed efferocytosis, is essential for both maintaining homeostasis and promoting tissue repair after infection or sterile injury. If not removed in a timely manner, uncleared cells can undergo secondary necrosis, and necrotic cells lose membrane integrity, release toxic intracellular components, and potentially induce inflammation or autoimmune diseases. Efferocytosis also initiates the repair process by producing a wide range of pro-reparative factors. Accumulating evidence has revealed that macrophage efferocytosis defects are involved in the development and progression of a variety of inflammatory and autoimmune diseases. The underlying mechanisms of efferocytosis impairment are complex, disease-dependent, and incompletely understood. In this review, we will first summarize the current knowledge about the normal signaling and metabolic processes of macrophage efferocytosis and its importance in maintaining tissue homeostasis and repair. We then will focus on analyzing the molecular and cellular mechanisms underlying efferocytotic abnormality (impairment) in disease or injury conditions. Next, we will discuss the potential molecular targets for enhanced efferocytosis in animal models of disease. To provide a balanced view, we will also discuss some deleterious effects of efferocytosis.


Assuntos
Apoptose , Fagocitose , Animais , Macrófagos , Inflamação , Transdução de Sinais
6.
Res Sq ; 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36778380

RESUMO

Background Severe lung infection can lead to brain dysfunction and neurobehavioral disorders. The mechanisms that regulate the lung-brain axis of inflammatory response to respiratory infection are incompletely understood. This study examined the effects of lung infection causing systemic and neuroinflammation as a potential mechanism contributing to blood-brain barrier (BBB) leakage and behavioral impairment. Methods Pneumonia was induced in adult C57BL/6 mice by intratracheal inoculation of Pseudomonas aeruginosa (PA). Solute extravasation, histology, immunofluorescence, RT-PCR, multiphoton imaging and neurological testing were performed in this study. Results Lung infection caused alveolar-capillary barrier injury as indicated by leakage of plasma proteins across pulmonary microvessels and histopathological characteristics of pulmonary edema (alveolar wall thickening, microvessel congestion, and neutrophil infiltration). PA also caused significant BBB dysfunction characterized by leakage of different sized molecules across cerebral microvessels and a decreased expression of cell-cell junctions (VE-cadherin, claudin-5) in the brain. BBB leakage peaked at 24 hours and lasted for 7 days post-inoculation. Additionally, mice with lung infection displayed hyperlocomotion and anxiety-like behaviors. To test whether cerebral dysfunction was caused by PA directly or indirectly, we measured bacterial load in multiple organs. While PA loads were detected in the lungs up to 7 days post-inoculation, bacteria were not detected in the brain as evidenced by negative cerebral spinal fluid (CSF) cultures and lack of distribution in different brain regions or isolated cerebral microvessels. However, mice with PA lung infection demonstrated increased mRNA expression in the brain of pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-α), chemokines (CXCL-1, CXCL-2) and adhesion molecules (VCAM-1 and ICAM-1) along with CD11b + cell recruitment, corresponding to their increased blood levels of white cells (polymorphonuclear cells) and cytokines. To confirm the direct effect of cytokines on endothelial permeability, we measured cell-cell adhesive barrier resistance and junction morphology in mouse brain microvascular endothelial cell monolayers, where administration of IL-1ß induced a significant reduction of barrier function coupled with tight junction (TJ) diffusion and disorganization. Combined treatment with IL-1ß and TNFα augmented the barrier injury. Conclusions These results suggest that lung bacterial infection causes cerebral microvascular leakage and neuroinflammation via a mechanism involving cytokine-induced BBB injury.

7.
PLoS One ; 18(2): e0281941, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36802387

RESUMO

BACKGROUND: Sepsis-associated encephalopathy (SAE) is characterized by a diffuse cerebral dysfunction that accompanies sepsis in the absence of direct central nervous system infection. The endothelial glycocalyx is a dynamic mesh containing heparan sulfate linked to proteoglycans and glycoproteins, including selectins and vascular/intercellular adhesion molecules (V/I-CAMs), which protects the endothelium while mediating mechano-signal transduction between the blood and vascular wall. During severe inflammatory states, components of the glycocalyx are shed into the circulation and can be detected in soluble forms. Currently, SAE remains a diagnosis of exclusion and limited information is available on the utility of glycocalyx-associated molecules as biomarkers for SAE. We set out to synthesize all available evidence on the association between circulating molecules released from the endothelial glycocalyx surface during sepsis and sepsis-associated encephalopathy. METHODS: MEDLINE (PubMed) and EMBASE were searched since inception until May 2, 2022 to identify eligible studies. Any comparative observational study: i) evaluating the association between sepsis and cognitive decline and ii) providing information on level of circulating glycocalyx-associated molecules was eligible for inclusion. RESULTS: Four case-control studies with 160 patients met the inclusion criteria. Meta-analysis of biomarkers ICAM-1 (SMD 0.41; 95% CI 0.05-0.76; p = 0.03; I2 = 50%) and VCAM-1 (SMD 0.55; 95% CI 0.12-0.98; p = 0.01; I2 = 82%) revealed higher pooled mean concentration in patients with SAE compared to the patients with sepsis alone. Single studies reported elevated levels of P-selectin (MD 0.80; 95% CI -17.77-19.37), E-selectin (MD 96.40; 95% Cl 37.90-154.90), heparan sulfate NS2S (MD 19.41; 95% CI 13.37-25.46), and heparan sulfate NS+NS2S+NS6S (MD 67.00; 95% CI 31.00-103.00) in patients with SAE compared to the patients with sepsis alone. CONCLUSION: Plasma glycocalyx-associated molecules are elevated in SAE and may be useful for early identification of cognitive decline in sepsis patients.


Assuntos
Encefalopatia Associada a Sepse , Sepse , Humanos , Glicocálix/química , Moléculas de Adesão Celular , Heparitina Sulfato , Biomarcadores , Estudos Observacionais como Assunto
8.
Shock ; 57(6): 228-242, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35613455

RESUMO

ABSTRACT: Extracellular vesicles (EVs) are nano-sized membrane-bound particles containing biologically active cargo molecules. The production and molecular composition of EVs reflect the physiological state of parent cells, and once released into the circulation, they exert pleiotropic functions via transferring cargo contents. Thus, circulating EVs not only serve as biomarkers, but also mediators in disease processes or injury responses. In the present study, we performed a comprehensive analysis of plasma EVs from burn patients and healthy subjects, characterizing their size distribution, concentration, temporal changes, cell origins, and cargo protein contents. Our results indicated that burn injury induced a significant increase in circulating EVs, the response peaked at the time of admission and declined over the course of recovery. Importantly, EV production correlated with injury severity, as indicated by the total body surface area and depth of burn, requirement for critical care/ICU stay, hospitalization length, wound infection, and concurrence of sepsis. Burn patients with inhalation injury showed a higher level of EVs than those without inhalation injury. We also evaluated patient demographics (age and sex) and pre-existing conditions (hypertension, obesity, and smoking) and found no significant correlation between these conditions and overall EV production. At the molecular level, flow cytometric analysis showed that the burn-induced EVs were largely derived from leukocytes and endothelial cells (ECs), which are known to be activated postburn. Additionally, a high level of zona-occludens-1 (ZO-1), a major constituent of tight junctions, was identified in burn EV cargos, indicative of injury in tissues that form barriers via tight junctions. Moreover, when applied to endothelial cell monolayers, burn EVs caused significant barrier dysfunction, characterized by decreased transcellular barrier resistance and disrupted cell-cell junction continuity. Taken together, these data suggest that burn injury promotes the production of EVs containing unique cargo proteins in a time-dependent manner; the response correlates with injury severity and worsened clinical outcomes. Functionally, burn EVs serve as a potent mediator capable of reducing endothelial barrier resistance and impairing junction integrity, a pathophysiological process underlying burn-associated tissue dysfunction. Thus, further in-depth characterization of circulating EVs will contribute to the development of new prognostic tools or therapeutic targets for advanced burn care.


Assuntos
Queimaduras , Vesículas Extracelulares , Queimaduras/complicações , Queimaduras/metabolismo , Comunicação Celular , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Junções Íntimas
9.
Am J Physiol Heart Circ Physiol ; 322(4): H622-H635, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35179978

RESUMO

Some patients with myocardial infarction (MI) exhibit lymphopenia, a reduction in blood lymphocyte count. Moreover, lymphopenia inversely correlates with patient prognosis. The objective of this study was to elucidate the underlying mechanisms that cause lymphopenia after MI. Multiparameter flow cytometric analysis demonstrated that MI induced profound B and T lymphopenia in a mouse model, peaking at day 1 post-MI. The finding that non-MI control and MI mice exhibited similar apoptotic rate for blood B and T lymphocytes argues against apoptosis being essential for MI-induced lymphopenia. Interestingly, the bone marrow in day 1 post-MI mice contained more B and T cells but showed less B- and T-cell proliferation compared with day 0 controls. This suggests that blood lymphocytes may travel to the bone marrow after MI. This was confirmed by adoptive transfer experiments demonstrating that MI caused the loss of transferred lymphocytes in the blood, but the accumulation of transferred lymphocytes in the bone marrow. To elucidate the underlying signaling pathways, ß2-adrenergic receptor or sphingosine-1-phosphate receptor type 1 (S1PR1) was pharmacologically blocked, respectively. ß2-receptor inhibition had no significant effect on blood lymphocyte count, whereas S1PR1 blockade aggravated lymphopenia in MI mice. Furthermore, we discovered that MI-induced glucocorticoid release triggered lymphopenia. This was supported by the findings that adrenalectomy (ADX) completely prevented mice from MI-induced lymphopenia, and supplementation with corticosterone in adrenalectomized MI mice reinduced lymphopenia. In conclusion, our study demonstrates that MI-associated lymphopenia involves lymphocyte redistribution from peripheral blood to the bone marrow, which is mediated by glucocorticoids.NEW & NOTEWORTHY Lymphopenia, a reduction in blood lymphocyte count, is known to inversely correlate with the prognosis for patients with myocardial infarction (MI). However, the underlying mechanisms by which cardiac ischemia induces lymphopenia remain elusive. This study provides the first evidence that MI activates the hypothalamic-pituitary-adrenal (HPA) axis to increase glucocorticoid secretion, and elevated circulating glucocorticoids induce blood lymphocytes trafficking to the bone marrow, leading to lymphopenia.


Assuntos
Linfopenia , Infarto do Miocárdio , Animais , Medula Óssea , Humanos , Contagem de Linfócitos , Linfócitos , Linfopenia/induzido quimicamente , Camundongos , Infarto do Miocárdio/complicações
10.
J Extracell Biol ; 1(7)2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38419739

RESUMO

Extracellular vesicles (EVs) are bioactive membrane-encapsulated particles generated by a series of events involving membrane budding, fission and fusion. Palmitoylation, mediated by DHHC palmitoyl acyltransferases, is a lipidation reaction that increases protein lipophilicity and membrane localization. Here, we report palmitoylation as a novel regulator of EV formation and function during sepsis. Our results showed significantly decreased circulating EVs in mice with DHHC21 functional deficiency (Zdhhc21dep/dep), compared to wild-type (WT) mice 24 h after septic injury. Furthermore, WT and Zdhhc21dep/dep EVs displayed distinct palmitoyl-proteomic profiles. Ingenuity pathway analysis indicated that sepsis altered several inflammation related pathways expressed in EVs, among which the most significantly activated was the complement pathway; however, this sepsis-induced complement enrichment in EVs was greatly blunted in Zdhhc21dep/dep EVs. Functionally, EVs isolated from WT mice with sepsis promoted neutrophil adhesion, transmigration, and neutrophil extracellular trap production; these effects were significantly attenuated by DHHC21 loss-of-function. Furthermore, Zdhhc21dep/dep mice displayed reduced neutrophil infiltration in lungs and improved survival after CLP challenges. These findings indicate that blocking palmitoylation via DHHC21 functional deficiency can reduce sepsis-stimulated production of complement-enriched EVs and attenuates their effects on neutrophil activity.

11.
Front Cell Dev Biol ; 9: 711003, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336864

RESUMO

Expressed on the endothelial cell (EC) surface of blood vessels, the glycocalyx (GCX), a mixture of carbohydrates attached to proteins, regulates the access of cells and molecules in the blood to the endothelium. Besides protecting endothelial barrier integrity, the dynamic microstructure of the GCX confers remarkable functions including mechanotransduction and control of vascular tone. Recently, a novel perspective has emerged supporting the pleiotropic roles of the endothelial GCX (eGCX) in cardiovascular health and disease. Because eGCX degradation occurs in certain pathological states, the circulating levels of eGCX degradation products have been recognized to have diagnostic or prognostic values. Beyond their biomarker roles, certain eGCX fragments serve as pathogenic factors in disease progression. Pharmacological interventions that attenuate eGCX degradation or restore its integrity have been sought. This review provides our current understanding of eGCX structure and function across the microvasculature in different organs. We also discuss disease or injury states, such as infection, sepsis and trauma, where eGCX dysfunction contributes to severe inflammatory vasculopathy.

12.
Sci Rep ; 11(1): 11146, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045489

RESUMO

Renal dysfunction is one of the most common complications of septic injury. One critical contributor to septic injury-induced renal dysfunction is renal vascular dysfunction. Protein palmitoylation serves as a novel regulator of vascular function. Here, we examined whether palmitoyl acyltransferase (PAT)-DHHC21 contributes to septic injury-induced renal dysfunction through regulating renal hemodynamics. Multispectral optoacoustic imaging showed that cecal ligation and puncture (CLP)-induced septic injury caused impaired renal excretion, which was improved in DHHC21 functional deficient (Zdhhc21dep/dep) mice. DHHC21 deficiency attenuated CLP-induced renal pathology, characterized by tissue structural damage and circulating injury markers. Importantly, DHHC21 loss-of-function led to better-preserved renal perfusion and oxygen saturation after CLP. The CLP-caused reduction in renal blood flow was also ameliorated in Zdhhc21dep/dep mice. Next, CLP promoted the palmitoylation of vascular α1-adrenergic receptor (α1AR) and the activation of its downstream effector ERK, which were blunted in Zdhhc21dep/dep mice. Vasoreactivity analysis revealed that renal arteries from Zdhhc21dep/dep mice displayed reduced constriction response to α1AR agonist phenylephrine compared to those from wild-type mice. Consistently, inhibiting PATs with 2-bromopalmitate caused a blunted vasoconstriction response to phenylephrine in small arteries isolated from human kidneys. Therefore, DHHC21 contributes to impaired renal perfusion and function during septic injury via promoting α1AR palmitoylation-associated vasoconstriction.


Assuntos
Aciltransferases/genética , Nefropatias/fisiopatologia , Rim/fisiopatologia , Sepse/fisiopatologia , Animais , Ceco/metabolismo , Ceco/fisiopatologia , Rim/metabolismo , Nefropatias/etiologia , Nefropatias/genética , Lipoilação , Camundongos , Camundongos Knockout , Receptores Adrenérgicos alfa 1/metabolismo , Sepse/complicações , Sepse/genética
13.
Am J Respir Cell Mol Biol ; 64(1): 19-28, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877613

RESUMO

Emerging evidence shows that after injury or infection, the mesenteric lymph acts as a conduit for gut-derived toxic factors to enter the blood circulation, causing systemic inflammation and acute lung injury. Neither the cellular and molecular identity of lymph factors nor their mechanisms of action have been well understood and thus have become a timely topic of investigation. This review will first provide a summary of background knowledge on gut barrier and mesenteric lymphatics, followed by a discussion focusing on the current understanding of potential injurious factors in the lymph and their mechanistic contributions to lung injury. We also examine lymph factors with antiinflammatory properties as well as the bidirectional nature of the gut-lung axis in inflammation.


Assuntos
Trato Gastrointestinal/patologia , Pulmão/patologia , Vasos Linfáticos/patologia , Síndrome de Resposta Inflamatória Sistêmica/patologia , Lesão Pulmonar Aguda/patologia , Animais , Humanos
14.
Front Cell Dev Biol ; 8: 600368, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195285

RESUMO

Palmitoylation is a post-translational modification (PTM) based on thioester-linkage between palmitic acid and the cysteine residue of a protein. This covalent attachment of palmitate is reversibly and dynamically regulated by two opposing sets of enzymes: palmitoyl acyltransferases containing a zinc finger aspartate-histidine-histidine-cysteine motif (PAT-DHHCs) and thioesterases. The reversible nature of palmitoylation enables fine-tuned regulation of protein conformation, stability, and ability to interact with other proteins. More importantly, the proper function of many surface receptors and signaling proteins requires palmitoylation-meditated partitioning into lipid rafts. A growing number of leukocyte proteins have been reported to undergo palmitoylation, including cytokine/chemokine receptors, adhesion molecules, pattern recognition receptors, scavenger receptors, T cell co-receptors, transmembrane adaptor proteins, and signaling effectors including the Src family of protein kinases. This review provides the latest findings of palmitoylated proteins in leukocytes and focuses on the functional impact of palmitoylation in leukocyte function related to adhesion, transmigration, chemotaxis, phagocytosis, pathogen recognition, signaling activation, cytotoxicity, and cytokine production.

15.
Am J Physiol Heart Circ Physiol ; 319(6): H1181-H1196, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33035434

RESUMO

Extracellular vesicles (EVs) have attracted rising interests in the cardiovascular field not only because they serve as serological markers for circulatory disorders but also because they participate in important physiological responses to stress and inflammation. In the circulation, these membranous vesicles are mainly derived from blood or vascular cells, and they carry cargos with distinct molecular signatures reflecting the origin and activation state of parent cells that produce them, thus providing a powerful tool for diagnosis and prognosis of pathological conditions. Functionally, circulating EVs mediate tissue-tissue communication by transporting bioactive cargos to local and distant sites, where they directly interact with target cells to alter their function. Recent evidence points to the critical contributions of EVs to the pathogenesis of vascular endothelial barrier dysfunction during inflammatory response to injury or infection. In this review, we provide a brief summary of the current knowledge on EV biology and advanced techniques in EV isolation and characterization. This is followed by a discussion focusing on the role and mechanisms of EVs in regulating blood-endothelium interactions and vascular permeability during inflammation. We conclude with a translational perspective on the diagnostic and therapeutic potential of EVs in vascular injury or infectious diseases, such as COVID-19.


Assuntos
Permeabilidade Capilar , Endotélio Vascular/metabolismo , Vesículas Extracelulares/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/metabolismo , Animais , Betacoronavirus/patogenicidade , COVID-19 , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Endotélio Vascular/patologia , Endotélio Vascular/virologia , Vesículas Extracelulares/patologia , Vesículas Extracelulares/virologia , Interações Hospedeiro-Patógeno , Humanos , Inflamação/patologia , Pandemias , Pneumonia Viral/metabolismo , Pneumonia Viral/patologia , Pneumonia Viral/virologia , SARS-CoV-2 , Transdução de Sinais
16.
Front Immunol ; 11: 586685, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042165

RESUMO

Gut ischemia/reperfusion (I/R) injury is a common clinical problem associated with significant mortality and morbidities that result from systemic inflammation and remote organ dysfunction, typically acute lung injury. The mechanisms underlying the dissemination of gut-derived harmful mediators into the circulation are poorly understood. The objective of our study was to determine the role of mesenteric lymphatic circulation in the systemic and pulmonary inflammatory response to gut I/R. Using a murine intestinal I/R model, we evaluated whether and how blocking mesenteric lymph flow affects the inflammatory response in local tissues (gut) and remote organs (lungs). We further explored the mechanisms of post-I/R lymph-induced systemic inflammation by examining neutrophil activity and interaction with endothelial cells in vitro. Mice subjected to intestinal I/R displayed a significant inflammatory response in local tissues, evidenced by neutrophil infiltration into mucosal areas, as well as lung inflammation, evidenced by increased myeloperoxidase levels, neutrophil infiltration, and elevated microvascular permeability in the lungs. Mesenteric lymph duct ligation (MLDL) had no effect on gut injury per se, but effectively attenuated lung injury following gut I/R. Cell experiments showed that lymph fluid from post-I/R animals, but not pre-I/R, increased neutrophil surface CD11b expression and their ability to migrate across vascular endothelial monolayers. Moreover, post-I/R lymph upregulated neutrophil expression of pro-inflammatory cytokines and chemokines, which was mediated by a mechanism involving nuclear factor (NF)-κB signaling. Consistently, gut I/R activated NF-κB in lung neutrophils, which was alleviated by MLDL. In conclusion, all these data indicate that mesenteric lymph circulation contributes to neutrophil activation and lung inflammation following gut I/R injury partly through activating NF-κB.


Assuntos
Sistema Linfático/imunologia , Ativação de Neutrófilo/imunologia , Pneumonia/imunologia , Traumatismo por Reperfusão/imunologia , Animais , Intestinos/imunologia , Intestinos/lesões , Intestinos/patologia , Masculino , Mesentério/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/metabolismo , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo
17.
J Neuroinflammation ; 17(1): 281, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32962721

RESUMO

BACKGROUND: Increased extracellular histones in the bloodstream are known as a biomarker for vascular dysfunction associated with severe trauma or sepsis. There is limited information regarding the pathogenic role of circulating histones in neuroinflammation and cerebrovascular endothelial injury. Particularly, it remains unclear whether histones affect the blood-brain barrier (BBB) permeability function. METHODS: The direct effects of unfractionated histones on endothelial barrier properties were first assessed in brain microvascular endothelial cell monolayers by measuring transendothelial electrical resistance and solute flux. This was followed by in vivo mouse experiments, where BBB function was assessed by quantifying brain tissue accumulation of intravenously injected tracers of different molecular sizes, and comparison was made in mice receiving a sublethal dose of histones versus sterile saline. In parallel, the endothelial barrier ultrastructure was examined in histone- and saline-injected animals under transmission electron microscopy, corresponding to the expression of tight junction and adherens junction proteins. RESULTS: Histones increased paracellular permeability to sodium fluorescein and reduced barrier resistance at 100 µg/mL; these responses were accompanied by discontinuous staining of the tight junction proteins claudin-5 and zona ocludens-1. Interestingly, the effects of histones did not seem to result from cytotoxicity, as evidenced by negative propidium iodide staining. In vivo, histones increased the paracellular permeability of the BBB to small tracers of < 1-kDa, whereas tracers larger than 3-kDa remained impermeable across brain microvessels. Further analysis of different brain regions showed that histone-induced tracer leakage and loss of tight junction protein expression mainly occurred in the hippocampus, but not in the cerebral cortex. Consistently, opening of tight junctions was found in hippocampal capillaries from histone-injected animals. Protein expression levels of GFAP and iBA1 remained unchanged in histone-injected mice indicating that histones did not affect reactive gliosis. Moreover, cell membrane surface charge alterations are involved in histone-induced barrier dysfunction and tight junction disruption. CONCLUSIONS: Extracellular histones cause a reversible, region-specific increase in BBB permeability to small molecules by disrupting tight junctions in the hippocampus. We suggest that circulating histones may contribute to cerebrovascular injury or brain dysfunction by altering BBB structure and function.


Assuntos
Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar/fisiologia , Líquido Extracelular/metabolismo , Histonas/sangue , Microvasos/metabolismo , Animais , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Líquido Extracelular/citologia , Líquido Extracelular/efeitos dos fármacos , Feminino , Histonas/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microvasos/citologia , Microvasos/efeitos dos fármacos
18.
J Cereb Blood Flow Metab ; 40(2): 374-391, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30574832

RESUMO

Inflammation-induced blood-brain barrier (BBB) dysfunction and microvascular leakage are associated with a host of neurological disorders. The tight junction protein claudin-5 (CLDN5) is a crucial protein necessary for BBB integrity and maintenance. CLDN5 is negatively regulated by the transcriptional repressor FOXO1, whose activity increases during impaired insulin/AKT signaling. Owing to an incomplete understanding of the mechanisms that regulate CLDN5 expression in BBB maintenance and dysfunction, therapeutic interventions remain underdeveloped. Here, we show a novel isoform-specific function for AKT2 in maintenance of BBB integrity. We identified that AKT2 during homeostasis specifically regulates CLDN5-dependent barrier integrity in brain microvascular endothelial cells (BMVECs) and that intervention with a selective insulin-receptor (IR) agonist, demethylasterriquinone B1 (DMAQ-B1), rescued IL-1ß-induced AKT2 inactivation, FOXO1 nuclear accumulation, and loss of CLDN5-dependent barrier integrity. Moreover, DMAQ-B1 attenuated preclinical CLDN5-dependent BBB dysfunction in mice subjected to experimental autoimmune encephalomyelitis. Taken together, the data suggest a regulatory role for IR/AKT2/FOXO1-signaling in CLDN5 expression and BBB integrity during neuroinflammation.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Claudina-5/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Proteína Forkhead Box O1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/metabolismo , Animais , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Encefalomielite Autoimune Experimental/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Indóis/farmacologia , Interleucina-1beta/farmacologia , Masculino , Camundongos , Receptor de Insulina/agonistas
19.
Cardiovasc Res ; 116(8): 1525-1538, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504252

RESUMO

AIMS: Microvesicles (MVs) conduct intercellular communication and impact diverse biological processes by transferring bioactive cargos to other cells. We investigated whether and how endothelial production of MVs contribute to vascular dysfunction during inflammation. METHODS AND RESULTS: We measured the levels and molecular properties of endothelial-derived MVs (EC-MVs) from mouse plasma following a septic injury elicited by cecal ligation and puncture, as well as those from supernatants of cultured endothelial cells stimulated by inflammatory agents including cytokines, thrombin, and complement 5a. The mouse studies showed that sepsis caused a significant increase in total plasma vesicles and VE-cadherin+ EC-MVs compared to sham control. In cultured ECs, different inflammatory agents caused diverse patterns of EC-MV production and cargo contents. When topically applied to endothelial cells, EC-MVs induced a cytoskeleton-junction response characterized by myosin light chain phosphorylation, contractile fibre reorganization, VE-cadherin phosphorylation, and adherens junction dissociation, functionally measured as increased albumin transendothelial flux and decreased barrier resistance. The endothelial response was coupled with protein tyrosine phosphorylation promoted by MV cargo containing c-Src kinase, whereas MVs produced from c-Src deficient cells did not exert barrier-disrupting effects. Additionally, EC-MVs contribute to endothelial inflammatory injury by promoting neutrophil-endothelium adhesion and release of neutrophil extracellular traps containing citrullinated histones and myeloperoxidase, a response unaltered by c-Src knockdown. CONCLUSION: Endothelial-derived microparticles cause endothelial barrier dysfunction by impairing adherens junctions and activating neutrophils. The signalling mechanisms underlying the endothelial cytoskeleton-junction response to EC-MVs involve protein phosphorylation promoted by MV cargo carrying c-Src. However, EC-MV-induced neutrophil activation was not dependent on c-Src.


Assuntos
Junções Aderentes/metabolismo , Micropartículas Derivadas de Células/enzimologia , Citoesqueleto/metabolismo , Células Endoteliais/enzimologia , Células Endoteliais da Veia Umbilical Humana/enzimologia , Inflamação/enzimologia , Sepse/enzimologia , Quinases da Família src/metabolismo , Junções Aderentes/patologia , Adolescente , Adulto , Animais , Micropartículas Derivadas de Células/patologia , Células Cultivadas , Citoesqueleto/patologia , Modelos Animais de Doenças , Células Endoteliais/patologia , Feminino , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Permeabilidade , Transporte Proteico , Sepse/patologia , Adulto Jovem
20.
PLoS One ; 14(5): e0214737, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31091226

RESUMO

OBJECTIVE: The endothelial glycocalyx constitutes part of the endothelial barrier but its degradation leaves endothelial cells exposed to transmigrating cells and circulating mediators that can damage the barrier or promote intercellular gaps. Syndecan proteins are key components of the endothelial glycocalyx and are shed during disease states where expression and activity of proteases such as thrombin are elevated. We tested the ability of thrombin to cleave the ectodomains of syndecans and whether the products could act directly on endothelial cells to alter barrier function. APPROACH AND RESULTS: Using transmission electron microscopy, we illustrated the presence of glycocalyx in human lung microvasculature. We confirmed expression of all syndecan subtypes on the endothelial surface of agarose-inflated human lungs. ELISA and western blot analysis suggested that thrombin can cleave syndecan-3/-4 ectodomains to produce fragments. In vivo, syndecan-3 ectodomain fragments increased extravasation of albumin-bound Evans blue in mouse lung, indicative of plasma protein leakage into the surrounding tissue. Syndecan-3/-4 ectodomain fragments decreased transendothelial electrical resistance, a measure of cell-cell adhesive barrier integrity, in a manner sensitive to a Rho kinase inhibitor. These effects were independent of glycosylation and thrombin receptor PAR1. Moreover, these cleavage products caused rapid VE-cadherin-based adherens junction disorganization and increased F-actin stress fibers, supporting their direct effect on endothelial paracellular permeability. CONCLUSIONS: We suggest that thrombin can cleave syndecan-3/4 ectodomain into fragments which interact with endothelial cells causing paracellular hyperpermeability. This may have important implications in the pathogenesis of vascular dysfunction during sepsis or thrombotic disease states where thrombin is activated.


Assuntos
Sindecana-3/metabolismo , Sindecana-4/metabolismo , Trombina/metabolismo , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Feminino , Glicocálix/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Microvasos/citologia , Permeabilidade , Domínios Proteicos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sindecana-3/química , Sindecana-3/genética , Sindecana-4/química , Sindecana-4/genética , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...