Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1356171, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601928

RESUMO

Introduction: By implementing small-scale and efficient fertilization techniques, it is possible to enhance the activity of microorganisms, thereby improving soil carbon sequestration and ecological value in agriculture. Methods: In this study, field experiments were conducted using various types of fertilizers: organic fertilizer, microbial fungal fertilizer, composite fertilizer, and an unfertilized control (CK). Additionally, different dosages of compound fertilizers were applied, including 0.5 times compound fertilizers, constant compound fertilizers, 1.5 times compound fertilizers and CK. Using advanced technologies such as Illumina MiSeq high-throughput sequencing, PICRUSt2 prediction, Anosim analysis, redundancy analysis, canonical correlation analysis, and correlation matrix, soil organic carbon (SOC) content and components, bacterial diversity, metabolic functions, and interaction mechanisms were examined in different fields. Results and Discussion: The results showed pronounced effects of various fertilization modes on SOC and the bacterial community, particularly in the topsoil layer (0-20 cm). Organic fertilizer treatments increased the richness and diversity of bacterial communities in the soil. However, conventional doses and excessive application of compound fertilizers reduced the diversity of soil bacterial communities and SOC content. Additionally, different fertilization treatments led to an increase in easily oxidizable organic carbon (EOC) contents. Interestingly, the relationship between SOC components and soil bacteria exhibited inconsistency. EOC was positively correlated with the bacterial diversity index. Additionally, Chloroflexi exhibited a negative correlation with both SOC and its components. The influence of metabolismon primary metabolic functions on the content of SOC components in the soil was more notable. It included seven types of tertiary functional metabolic pathways significantly correlated with SOC components (p < 0.05). Purpose and Significance: These findings enhance the understanding of the relative abundance of bacterial communities, particularly those related to the carbon cycle, by adjusting agricultural fertilization patterns. This adjustment serves as a reference for enhancing carbon sinks and reducing emissions in agricultural soils.

2.
Nat Commun ; 15(1): 3029, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589456

RESUMO

The discovery of various primary ferroic phases in atomically-thin van der Waals crystals have created a new two-dimensional wonderland for exploring and manipulating exotic quantum phases. It may also bring technical breakthroughs in device applications, as evident by prototypical functionalities of giant tunneling magnetoresistance, gate-tunable ferromagnetism and non-volatile ferroelectric memory etc. However, two-dimensional multiferroics with effective magnetoelectric coupling, which ultimately decides the future of multiferroic-based information technology, has not been realized yet. Here, we show that an unconventional magnetoelectric coupling mechanism interlocked with heterogeneous ferrielectric transitions emerges at the two-dimensional limit in van der Waals multiferroic CuCrP2S6 with inherent antiferromagnetism and antiferroelectricity. Distinct from the homogeneous antiferroelectric bulk, thin-layer CuCrP2S6 under external electric field makes layer-dependent heterogeneous ferrielectric transitions, minimizing the depolarization effect introduced by the rearrangements of Cu+ ions within the ferromagnetic van der Waals cages of CrS6 and P2S6 octahedrons. The resulting ferrielectric phases are characterized by substantially reduced interlayer magnetic coupling energy of nearly 50% with a moderate electric field of 0.3 V nm-1, producing widely-tunable magnetoelectric coupling which can be further engineered by asymmetrical electrode work functions.

3.
Adv Mater ; 36(15): e2309487, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38174652

RESUMO

Electronic band structure engineering of metal-halide perovskites (MHP) lies at the core of fundamental materials research and photovoltaic applications. However, reconfiguring the band structures in MHP for optimized electronic properties remains challenging. This article reports a generic strategy for constructing near-edge states to improve carrier properties, leading to enhanced device performances. The near-edge states are designed around the valence band edge using theoretical prediction and constructed through tailored material engineering. These states are experimentally revealed with activation energies of around 23 milli-electron volts by temperature-dependent time-resolved spectroscopy. Such small activation energies enable prolonged carrier lifetime with efficient carrier transition dynamics and low non-radiative recombination losses, as corroborated by the millisecond lifetimes of microwave conductivity. By constructing near-edge states in positive-intrinsic-negative inverted cells, a champion efficiency of 25.4% (25.0% certified) for a 0.07-cm2 cell and 23.6% (22.7% certified) for a 1-cm2 cell is achieved. The most stable encapsulated cell retains 90% of its initial efficiency after 1100 h of maximum power point tracking under one sun illumination (100 mW cm-2) at 65 °C in ambient air.

4.
J Phys Condens Matter ; 36(17)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38232397

RESUMO

The discoveries of numerous exciting phenomena in twisted bilayer graphene (TBG) are stimulating significant investigations on moiré structures that possess a tunable moiré potential. Optical response can provide insights into the electronic structures and transport phenomena of non-twisted and twisted moiré structures. In this article, we review both experimental and theoretical studies of optical properties such as optical conductivity, dielectric function, non-linear optical response, and plasmons in moiré structures composed of graphene, hexagonal boron nitride (hBN), and/or transition metal dichalcogenides. Firstly, a comprehensive introduction to the widely employed methodology on optical properties is presented. After, moiré potential induced optical conductivity and plasmons in non-twisted structures are reviewed, such as single layer graphene-hBN, bilayer graphene-hBN and graphene-metal moiré heterostructures. Next, recent investigations of twist-angle dependent optical response and plasmons are addressed in twisted moiré structures. Additionally, we discuss how optical properties and plasmons could contribute to the understanding of the many-body effects and superconductivity observed in moiré structures.

5.
Nanoscale Horiz ; 9(3): 449-455, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38198181

RESUMO

Experiments have shown that nanoscale ripples in a graphene membrane exhibit unexpectedly high catalytic activity with respect to hydrogen dissociation. Nonetheless, the catalytic selectivity of nanorippled graphene remains unknown, which is an equally important property for assessing a catalyst's potential and its fit-for-purpose applications. Herein, we examine the catalytic selectivity of nanorippled graphene using a model reaction of molecular hydrogen with another simple but double-bonded molecule, oxygen, and comparing the measurement results with those from splitting of hydrogen molecules. We show that although nanorippled graphene exhibits a high catalytic activity toward hydrogen dissociation, the activity for catalyzing the hydrogen-oxygen reaction is quite low, translating into a strong catalytic selectivity. The latter reaction involves the reduction of oxygen molecules by the dissociated hydrogen adatoms, which requires additional energy cost and practically determines the selectivity. In this sense, the well-established information about reactions in general of atomic hydrogen with many other species in the literature could potentially predict the selectivity of nanorippled graphene as a catalyst. Our work provides implications for the catalytic properties of nanorippled graphene, especially its selectivity. The results would be important for its extension to a wider range of reactions and for designer technologies involving hydrogen.

6.
Nat Mater ; 23(3): 347-355, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37443381

RESUMO

Transition metal dichalcogenide (TMD) nanotubes offer a unique platform to explore the properties of TMD materials at the one-dimensional limit. Despite considerable efforts thus far, the direct growth of TMD nanotubes with controllable chirality remains challenging. Here we demonstrate the direct and facile growth of high-quality WS2 and WSe2 nanotubes on Si substrates using catalytic chemical vapour deposition with Au nanoparticles. The Au nanoparticles provide unique accommodation sites for the nucleation of WS2 or WSe2 shells on their surfaces and seed the subsequent growth of nanotubes. We find that the growth mode of nanotubes is sensitive to the temperature. With careful temperature control, we realize ~79% WS2 nanotubes with single chiral angles, with a preference of 30° (~37%) and 0° (~12%). Moreover, we demonstrate how the geometric, electronic and optical properties of the synthesized WS2 nanotubes can be modulated by the chirality. We anticipate that this approach using Au nanoparticles as catalysts will facilitate the growth of TMD nanotubes with controllable chirality and promote the study of their interesting properties and applications.

7.
Science ; 380(6652): 1367-1372, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37384701

RESUMO

Rydberg excitons, the solid-state counterparts of Rydberg atoms, have sparked considerable interest with regard to the harnessing of their quantum application potentials, but realizing their spatial confinement and manipulation poses a major challenge. Lately, the rise of two-dimensional moiré superlattices with highly tunable periodic potentials provides a possible pathway. Here, we experimentally demonstrate this capability through the spectroscopic evidence of Rydberg moiré excitons (XRM), which are moiré-trapped Rydberg excitons in monolayer semiconductor tungsten diselenide adjacent to twisted bilayer graphene. In the strong coupling regime, the XRM manifest as multiple energy splittings, pronounced red shift, and narrowed linewidth in the reflectance spectra, highlighting their charge-transfer character wherein electron-hole separation is enforced by strongly asymmetric interlayer Coulomb interactions. Our findings establish the excitonic Rydberg states as candidates for exploitation in quantum technologies.

8.
Nano Lett ; 23(5): 1836-1842, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36799930

RESUMO

In two-dimensional small-angle twisted bilayers, van der Waals (vdW) interlayer interaction introduces an atomic-scale reconstruction, which consists of a moiré-periodic network of local subdegree lattice rotations. However, real-space measurement of the subdegree lattice rotation requires extremely high spatial resolution, which is an outstanding challenge in an experiment. Here, a topmost small-period graphene moiré pattern is introduced as a magnifying lens to magnify sub-Angstrom lattice distortions in small-angle twisted bilayer graphene (TBG) by about 2 orders of magnitude. Local moiré periods of the topmost graphene moiré patterns and low-energy van Hove singularities of the system are spatially modified by the atomic-scale reconstruction of the underlying TBG, thus enabling real-space mapping of the networks of the subdegree lattice rotations both in structure and in electronic properties. Our results indicate that it is quite facile to study subdegree lattice rotation in vdW systems by measuring the periods of the topmost moiré superlattice.

9.
J Colloid Interface Sci ; 637: 251-261, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36706721

RESUMO

Owing to price-boom and low-reserve of Lithium ion batteries (LIBs), cost-cutting and well-stocked sodium ion batteries (SIBs) attract a lot of attention, aiming to develop an effective energy storage and conversion equipment. As a typical anode for SIBs, Iron sulfide (FeS) is difficult to maintain the high theoretical capacity. Structural instability and inherent low conductivity limit the cyclic and rate performance of FeS. Herein, hierarchical architecture of FeS-FeSe2 coated with nitrogen-doped carbon (NC) is obtained by single-step solvothermal method and two-stage high-temperature treatments. Specifically, lattice imperfections provided by heterogeneous interfaces increase the Na+ storage sites and fasten ion/electron transfer. Synergistic effect induced by the hierarchical architecture effectively enhances the electrochemical activity and reduces the resistance, which contributes to the transfer kinetics of Na+. In addition, the phenomenon that heterogeneous interfaces provide more active site and extra migration Na+ path is also proved by density functional theory (DFT). As an anode for SIBs, FeS-FeSe2/NC (FSSe/C) delivers highly reversible capacity (704.5 mAh·g-1 after 120 cycles at 0.2 A·g-1), excellent rate performance (326.3 mAh·g-1 at 12 A·g-1) and long-lasting durability (492.3 mAh·g-1 after 1000 cycles at 4 A·g-1 with 100 % capacity retention). Notably, the full battery, assembled with FSSe/C and Na3V2(PO4)3/C (NVP/C), delivers reversible capacity of 252.1 mAh·g-1 after 300 cycles at 1 A·g-1. This work provides a facile method to construct a hierarchical architecture anode for high-performance SIBs.

10.
Front Psychol ; 13: 972543, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438329

RESUMO

E-commerce in agri-business enterprises is a potent force in eradicating rural poverty in China. However, it has not reached its potential as many of the agri-business enterprises in rural areas are slow in re-thinking their distribution channel and implementing e-commerce. This study utilizes the multidimensionality of the Tornatsky and Fleisher Technology-Organization-Environment (TOE) framework to provide insights into why rural agri-business enterprises are not adopting e-commerce strategies. Specifically, it examines the moderating role of entrepreneurial orientation (EO) on the relationship between the sub-variables in the three contexts and e-commerce adoption. Empirical data from 192 micro agri-business enterprises were analyzed using PLS-SEM. The results show that relative advantage, organization readiness, competitive pressure, and government support have a direct positive impact on e-commerce adoption except for cost. The results also show that EO does not have a significant role in moderating the variables in the organizational context and environmental context. EO only moderated the relationship between relative advantage in the technology context and e-commerce adoption. This study advances research on e-commerce adoption by highlighting the importance of the owners' EO as a moderator between TOE factors and e-commerce adoption. It suggests that entrepreneurship must be pursued vigorously among agribusiness owners in rural China to enhance the adoption of e-commerce.

11.
Phys Rev Lett ; 129(17): 176402, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36332255

RESUMO

We report an experimental study of a high-order moiré pattern formed in graphene-monolayer xenon heterostructure. The moiré period is in situ tuned from few nanometers to +∞, by adjusting the lattice constant of the xenon monolayer through annealing. Using angle-resolved photoemission spectroscopy, we observe that Dirac node replicas move closer and finally overlap with a gap opening, as the moiré pattern expands to +∞ and evolves into a Kekulé distortion. A moiré Hamiltonian coupling Dirac fermions from different valleys explains experimental results and indicates narrow moiré band. Our Letter demonstrates a platform to study continuous evolution of the moiré pattern, and provides an unprecedented approach for tailoring Dirac fermions with tunable intervalley coupling.

12.
ACS Nano ; 16(10): 17087-17096, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36227156

RESUMO

One-dimensional (1D) arsenene nanostructures are predicted to host a variety of interesting physical properties including antiferromagnetic, semiconductor-semimetal transition and quantum spin Hall effect, which thus holds great promise for next-generation electronic and spintronic devices. Herein, we devised a surface template strategy in a combination with surface-catalyzed decomposition of molecular As4 cluster toward the synthesis of the superlattice of ultranarrow armchair arsenic nanochains in a large domain on Au(111). In the low annealing temperature window, zero-dimensional As4 nanoclusters are assembled into continuous films through intermolecular van der Waals and molecule-substrate interactions. At the elevated temperature, the subsequent surface-assisted decomposition of molecular As4 nanoclusters leads to the formation of a periodic array of 1D armchair arsenic nanochains that form a (2 × 3) superstructure on the Au(111) surface. These ultranarrow armchair arsenic nanochains are predicted to have a small bandgap of ∼0.50 eV, in contrast to metallic zigzag chains. In addition, the Au-supported arsenic nanochains can be flipped to form a bilayer structure through tip indentation and manipulation, suggesting the possible transfer of these nanochains from the substrate. The successful realization of arsenic nanostructures is expected to advance low-dimensional physics and infrared optoelectronic nanodevices.

13.
Nat Commun ; 13(1): 5241, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068242

RESUMO

The discovery of magnetism in ultrathin crystals opens up opportunities to explore new physics and to develop next-generation spintronic devices. Nevertheless, two-dimensional magnetic semiconductors with Curie temperatures higher than room temperature have rarely been reported. Ferrites with strongly correlated d-orbital electrons may be alternative candidates offering two-dimensional high-temperature magnetic ordering. This prospect is, however, hindered by their inherent three-dimensional bonded nature. Here, we develop a confined-van der Waals epitaxial approach to synthesizing air-stable semiconducting cobalt ferrite nanosheets with thickness down to one unit cell using a facile chemical vapor deposition process. The hard magnetic behavior and magnetic domain evolution are demonstrated by means of vibrating sample magnetometry, magnetic force microscopy and magneto-optical Kerr effect measurements, which shows high Curie temperature above 390 K and strong dimensionality effect. The addition of room-temperature magnetic semiconductors to two-dimensional material family provides possibilities for numerous novel applications in computing, sensing and information storage.

14.
Front Psychol ; 13: 928331, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092055

RESUMO

Daka destinations refer to tagging one's visit to a popular destination by posting on social media. As a novel tourism concept derived from digital media in the post-pandemic era, Daka destinations have become a major option for potential tourists; thus, investigating tourist intentions toward them is of utmost significance to tourism recovery. Based on the viewpoints of information sources of Daka destinations, tourism motivations, and self-construction, this study investigates the research framework of potential tourism intentions through three scenarios. The findings revealed the following: (i) Different information sources have different stimuli for potential tourists, and WeChat Moments exerted a positive impact on tourism intention because of credibility; tourism bloggers from Weibo exert a more significant positive impact on tourism intentions of potential tourists because of professionalism. (ii) Considering the credibility of WeChat Moments, the extrinsic motivation of potential tourists exerted a more significant impact on tourism intentions; regarding professional tourism bloggers, the intrinsic motivation of potential tourists exerted a more significant impact on tourism intention. (iii) Regarding the credibility of WeChat Moments, dependent self-construction potential tourists with extrinsic motivation exerted a more significant impact on tourism intention. Regarding tourism bloggers with high professionalism, independent self-construal potential tourists with intrinsic motivation exerted a more significant impact on tourism intention. This study enriches the research mechanism of the formation path of potential tourists' tourism intention, extends the self-construction theory to the research field of using social media to collect Daka destinations tourism information, and provides a reference to subsequent research on potential tourists' tourism intention.

15.
Phys Rev Lett ; 129(5): 056803, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35960565

RESUMO

Strain-induced pseudomagnetic fields can mimic real magnetic fields to generate a zero-magnetic-field analog of the Landau levels (LLs), i.e., the pseudo-Landau levels (PLLs), in graphene. The distinct nature of the PLLs enables one to realize novel electronic states beyond what is feasible with real LLs. Here, we show that it is possible to realize exotic electronic states through the coupling of zeroth PLLs in strained graphene. In our experiment, nanoscale strained structures embedded with PLLs are generated along a one-dimensional (1D) channel of suspended graphene monolayer. Our results demonstrate that the zeroth PLLs of the strained structures are coupled together, exhibiting a serpentine pattern that snakes back and forth along the 1D suspended graphene monolayer. These results are verified theoretically by large-scale tight-binding calculations of the strained samples. Our result provides a new approach to realizing novel quantum states and to engineering the electronic properties of graphene by using localized PLLs as building blocks.

16.
Adv Sci (Weinh) ; 9(29): e2201554, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35948500

RESUMO

Despite extensive study, the bandgap characteristics of lead halide perovskites are not well understood. Usually, these materials are considered as direct bandgap semiconductors, while their photoluminescence quantum yield (PLQY) is very low in the solid state or single crystal (SC) state. Some researchers have noted a weak indirect bandgap below the direct bandgap transition in these perovskites. Herein, application of pressure to a CsPbBr3 SC and first-principles calculations reveal that the nature of the bandgap becomes more direct at a relatively low pressure due to decreased dynamic Rashba splitting. This effect results in a dramatic PLQY improvement, improved more than 90 times, which overturns the traditional concept that the PLQY of lead halide perovskite SC cannot exceed 10%. Application of higher pressure transformed the CsPbBr3 SC into a pure indirect bandgap phase, which can be maintained at near-ambient pressure. It is thus proved that lead halide perovskites can induce a phase transition between direct and indirect bandgaps. In addition, distinct piezochromism is observed for a perovskite SC for the first time. This work provides a novel framework to understand the optoelectronic properties of these important materials.

17.
Natl Sci Rev ; 9(6): nwab135, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35795458

RESUMO

Stacking atomically thin films enables artificial construction of van der Waals heterostructures with exotic functionalities such as superconductivity, the quantum Hall effect, and engineered light-matter interactions. In particular, heterobilayers composed of monolayer transition metal dichalcogenides have attracted significant interest due to their controllable interlayer coupling and trapped valley excitons in moiré superlattices. However, the identification of twist-angle-modulated optical transitions in heterobilayers is sometimes controversial since both momentum-direct (K-K) and -indirect excitons reside on the low energy side of the bright exciton in the monolayer constituents. Here, we attribute the optical transition at ∼1.35 eV in the WS2/WSe2 heterobilayer to an indirect Γ-K transition based on a systematic analysis and comparison of experimental photoluminescence spectra with theoretical calculations. The exciton wavefunction obtained by the state-of-the-art GW-Bethe-Salpeter equation approach indicates that both the electron and hole of the excitons are contributed by the WS2 layer. Polarization-resolved k-space imaging further confirms that the transition dipole moment of this optical transition is dominantly in-plane and is independent of the twist angle. The calculated absorption spectrum predicts that the so-called interlayer exciton peak coming from the K-K transition is located at 1.06 eV, but with a much weaker amplitude. Our work provides new insight into the steady-state and dynamic properties of twist-angle-dependent excitons in van der Waals heterostructures.

18.
Natl Sci Rev ; 9(5): nwab153, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35591917

RESUMO

Two-dimensional (2D) rare-earth oxides (REOs) are a large family of materials with various intriguing applications and precise facet control is essential for investigating new properties in the 2D limit. However, a bottleneck remains with regard to obtaining their 2D single crystals with specific facets because of the intrinsic non-layered structure and disparate thermodynamic stability of different facets. Herein, for the first time, we achieve the synthesis of a wide variety of high-quality 2D REO single crystals with tailorable facets via designing a hard-soft-acid-base couple for controlling the 2D nucleation of the predetermined facets and adjusting the growth mode and direction of crystals. Also, the facet-related magnetic properties of 2D REO single crystals were revealed. Our approach provides a foundation for further exploring other facet-dependent properties and various applications of 2D REO, as well as inspiration for the precise growth of other non-layered 2D materials.

19.
ACS Appl Mater Interfaces ; 13(47): 56446-56455, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34787999

RESUMO

P-type SnTe-based compounds have attracted extensive attention because of their high thermoelectric performance. Previous studies have made tremendous efforts to investigate native atomic defects in SnTe-based compounds, but there has been no direct experimental evidence so far. On the basis of MBE, STM, ARPES, DFT calculations, and transport measurements, this work directly visualizes the dominant native atomic defects and clarifies an alternative optimization mechanism of electronic transport properties via defect engineering in epitaxially grown SnTe (111) films. Our findings prove that positively charged Sn vacancies (VSn) and negatively charged Sn interstitials (Sni) are the leading native atomic defects that dominate electronic transport in SnTe, in contrast to previous studies that only considered VSn. Increasing the substrate temperature (Tsub) and decreasing the Te/Sn flux ratio during film growth reduces the density of VSn while increasing the density of Sni. A high Tsub results in a low hole density and high carrier mobility in SnTe films. The SnTe film grown at Tsub = 593 K and Te/Sn = 2/1 achieves its highest power factor of 1.73 mW m-1 K-2 at 673 K, which is attributed to the optimized hole density of 2.27 × 1020 cm-3 and the increased carrier mobility of 85.6 cm2 V-1 s-1. Our experimental studies on the manipulation of native atomic defects can contribute to an increased understanding of the electronic transport properties of SnTe-based compounds.

20.
ACS Appl Mater Interfaces ; 13(41): 48516-48524, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34612037

RESUMO

The alloy strategy through the A- or X-site is a common method for experimental preparation of high-performance and stable lead-based perovskite solar cells. As one of the important candidates for lead-free and stable photovoltaic absorbers, the inorganic antiperovskite family has recently been reported to exhibit excellent optoelectronic properties. However, the current reports on the design of antiperovskite alloys are rare. In this work, we investigated the previously overlooked electronic property (e.g., conduction band convergence), static dielectric constant, and exciton binding energy in inorganic antiperovskite nitrides by first-principles calculations. Then, we revealed a linear relationship between the tolerance factor and various physical quantities. Guided by the established structure-composition-property relationship in six antiperovskite nitrides X3NA (X2+ = Mg2+, Ca2+, Sr2+; A3- = P3-, As3-, Sb3-, Bi3-), for the first time, we designed a promising antiperovskite alloy Mg3NAs0.5Bi0.5 with a quasi-direct band gap of 1.402 eV. Finally, we made a comprehensive comparison between antiperovskite nitrides and conventional halide perovskites for pointing out the future direction for device applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...