Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(31): e2119439119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35895681

RESUMO

Archaeal viruses with a spindle-shaped virion are abundant and widespread in extremely diverse environments. However, efforts to obtain the high-resolution structure of a spindle-shaped virus have been unsuccessful. Here, we present the structure of SSV19, a spindle-shaped virus infecting the hyperthermophilic archaeon Sulfolobus sp. E11-6. Our near-atomic structure reveals an unusual sevenfold symmetrical virus tail consisting of the tailspike, nozzle, and adaptor proteins. The spindle-shaped capsid shell is formed by seven left-handed helical strands, constructed of the hydrophobic major capsid protein, emanating from the highly glycosylated tail assembly. Sliding between adjacent strands is responsible for the variation of a virion in size. Ultrathin sections of the SSV19-infected cells show that SSV19 virions adsorb to the host cell membrane through the tail after penetrating the S-layer. The tailspike harbors a putative endo-mannanase domain, which shares structural similarity to a Bacteroides thetaiotaomicro endo-mannanase. Molecules of glycerol dibiphytanyl glycerol tetraether lipid were observed in hydrophobic clefts between the tail and the capsid shell. The nozzle protein resembles the stem and clip domains of the portals of herpesviruses and bacteriophages, implying an evolutionary relationship among the archaeal, bacterial, and eukaryotic viruses.


Assuntos
Fuselloviridae , Sulfolobus , Proteínas do Capsídeo/química , Fuselloviridae/química , Fuselloviridae/genética , Fuselloviridae/isolamento & purificação , Genoma Viral , Glicerol , Sulfolobus/virologia , Vírion/química , Vírion/genética , Vírion/isolamento & purificação
2.
Appl Biochem Biotechnol ; 187(4): 1238-1254, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30209713

RESUMO

3-Ketosteroid-9α-hydroxylase (KSH) consists of two protein systems, KshA and KshB, and is a key enzyme in microbial degradation pathway of natural sterols. 9α-Hydroxy-4-androstene-3,17-dione (9α-OH-AD) is a valuable steroid pharmaceutical intermediate. The expression of a 3-ketosteroid-9α-hydroxylase oxygenase (KshA1) with a broad substrate range and high hydroxylation ability was enhanced in Mycobacterium sp. LY-1 to improve the yield of 9α-OH-AD. Through whole-genome sequence mining and homologous comparison, the putative genes (kshA1 and kshB) in wild strain LY-1 were firstly identified. Then they were heterogeneously co-expressed in Escherichia coli BL21. The transformation results of recombinant BL21-KshA1/B demonstrated KshA1/B had high hydroxylation ability to AD. Moreover, substrate preference analysis suggested that KshA1LY-1 had a broad substrate range. After enhancing expression of kshA1 and kshB in the strain LY-1, the maximum productivity of 9α-OH-AD in recombinant LY-1-KshA1/B reached 0.064 g/L/h in a 5-L stirred fermenter.


Assuntos
Regulação Bacteriana da Expressão Gênica , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Mycobacterium/genética , Sequência de Aminoácidos , Hidroxilação , Oxigenases de Função Mista/química , Modelos Moleculares , Mycobacterium/enzimologia , Conformação Proteica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...