Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 78(13): 4702-14, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22544234

RESUMO

Documenting the role of novel mutation versus homologous recombination in bacterial evolution, and especially in the invasion of new hosts, is central to understanding the long-term dynamics of pathogenic bacteria. We used multilocus sequence typing (MLST) to study this issue in Xylella fastidiosa subsp. pauca from Brazil, a bacterium causing citrus variegated chlorosis (CVC) and coffee leaf scorch (CLS). All 55 citrus isolates typed (plus one coffee isolate) defined three similar sequence types (STs) dominated by ST11 (85%), while the remaining 22 coffee isolates defined two STs, mainly ST16 (74%). This low level of variation masked unusually large allelic differences (>1% divergence with no intermediates) at five loci (leuA, petC, malF, cysG, and holC). We developed an introgression test to detect whether these large differences were due to introgression via homologous recombination from another X. fastidiosa subspecies. Using additional sequencing around these loci, we established that the seven randomly chosen MLST targets contained seven regions of introgression totaling 2,172 bp of 4,161 bp (52%), only 409 bp (10%) of which were detected by other recombination tests. This high level of introgression suggests the hypothesis that X. fastidiosa subsp. pauca became pathogenic on citrus and coffee (crops cultivated in Brazil for several hundred years) only recently after it gained genetic variation via intersubspecific recombination, facilitating a switch from native hosts. A candidate donor is the subspecies infecting plum in the region since 1935 (possibly X. fastidiosa subsp. multiplex). This hypothesis predicts that nonrecombinant native X. fastidiosa subsp. pauca (not yet isolated) does not cause disease in citrus or coffee.


Assuntos
Recombinação Genética , Xylella/classificação , Xylella/genética , Brasil , Citrus/microbiologia , Análise por Conglomerados , Café/microbiologia , DNA Bacteriano/química , DNA Bacteriano/genética , Variação Genética , Genótipo , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Doenças das Plantas/microbiologia , Xylella/isolamento & purificação
2.
PLoS One ; 5(11): e15488, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-21103383

RESUMO

Invasive diseases present an increasing problem worldwide; however, genomic techniques are now available to investigate the timing and geographical origin of such introductions. We employed genomic techniques to demonstrate that the bacterial pathogen causing Pierce's disease of grapevine (PD) is not native to the US as previously assumed, but descended from a single genotype introduced from Central America. PD has posed a serious threat to the US wine industry ever since its first outbreak in Anaheim, California in the 1880s and continues to inhibit grape cultivation in a large area of the country. It is caused by infection of xylem vessels by the bacterium Xylella fastidiosa subsp. fastidiosa, a genetically distinct subspecies at least 15,000 years old. We present five independent kinds of evidence that strongly support our invasion hypothesis: 1) a genome-wide lack of genetic variability in X. fastidiosa subsp. fastidiosa found in the US, consistent with a recent common ancestor; 2) evidence for historical allopatry of the North American subspecies X. fastidiosa subsp. multiplex and X. fastidiosa subsp. fastidiosa; 3) evidence that X. fastidiosa subsp. fastidiosa evolved in a more tropical climate than X. fastidiosa subsp. multiplex; 4) much greater genetic variability in the proposed source population in Central America, variation within which the US genotypes are phylogenetically nested; and 5) the circumstantial evidence of importation of known hosts (coffee plants) from Central America directly into southern California just prior to the first known outbreak of the disease. The lack of genetic variation in X. fastidiosa subsp. fastidiosa in the US suggests that preventing additional introductions is important since new genetic variation may undermine PD control measures, or may lead to infection of other crop plants through the creation of novel genotypes via inter-subspecific recombination. In general, geographically mixing of previously isolated subspecies should be avoided.


Assuntos
Metagenoma/genética , Metagenômica/métodos , Doenças das Plantas/microbiologia , Vitis/microbiologia , Xylella/genética , América Central , DNA Bacteriano/química , DNA Bacteriano/genética , Evolução Molecular , Genoma Bacteriano/genética , Genótipo , Geografia , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Recombinação Genética , Análise de Sequência de DNA , Especificidade da Espécie , Estados Unidos , Xylella/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA