Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 354: 120302, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38401492

RESUMO

Tetrabromobisphenol A (TBBPA) that widely exists in soil and poses a potential threat to ecological environment urgently needs economically efficient remediation techniques. This study utilized both homogeneous Fe2⁺ solution and heterogeneous iron-based nanomaterials (chemically synthesized nano zero-valence iron (nZVI) and green-synthesized iron nanoparticles (G-Fe NPs)) to activate persulfate (PS) and assess their efficacy in degrading TBBPA in soil. The results demonstrate the superior performance of heterogeneous catalytic systems (WG-Fe NPs/PS (82.07%) and WnZVI/PS (78.32%)) over homogeneous catalytic system (WFe2+/PS (71.69%)), In addition, G-Fe NPs and nZVI effectively controlled the slow release of Fe2+. The optimization analysis using response surface methodology (RSM) reveal the remarkable significance of the experimental model based on the box-behnken design. RSM show that G-Fe NPs/PS exhibited optimal process parameters and predicted the maximum soil TBBPA degradation efficiency reaching 98.77%. The results of density functional theory calculations suggest that C-Br are the primary targets for electrophilic substitution reactions. Based on the f0 value and △G, the degradation pathway of TBBPA is inferred to involve a sequential debromination process, followed by the cleavage of intermediate carbon-carbon bonds and subsequent oxidation reactions. Hence, G-Fe NPs/PS not only facilitate waste resource utilization but also hold significant application potential.


Assuntos
Ferro , Bifenil Polibromatos , Poluentes Químicos da Água , Ferro/química , Solo , Oxirredução , Carbono , Poluentes Químicos da Água/química
2.
Environ Res ; 251(Pt 2): 118198, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220084

RESUMO

TCP (3,5,6-trichloro-2-pyridinol), the main recalcitrant degradation product of chlorpyrifos, poses a high risk to human health and ecological systems. This study provided a comprehensive exploration of the pyrite-activated persulfate (PS) system for the removal of TCP in water and placed particular emphasis on the pyrite oxidation process that releases Fe. The results showed that the pyrite-activated PS system can completely degrade TCP within 300 min at 5.0 mmol/L PS and 1000 mg/L pyrite at 25 °C, wherein small amounts of PS (1 mmol/L) can effectively facilitate TCP removal and the oxidation of pyrite elements, while excessive PS (>20 mmol/L) can lead to competitive inhibitory effects, especially in the Fe release process. Aimed at the dual effects, the evident positive correlation (R2 > 0.90) between TCP degradation (kTCP) and Fe element release (kFe), but the value of k (0.00237) in the pyrite addition variable experiment was less than that in the PS experiment (k = 0.00729), further indicating that the inhibition effect of excessive addition consists of PS but not notably pyrite. Moreover, the predominant free radicals and non-free radicals produced in the pyrite/PS system were tested, with the order of significance being •OH < Fe (Ⅳ) < SO4•- < â€¢O2- < 1O2, wherein 1O2 emerged as the principal player in both TCP degradation and Fe release from the pyrite oxidation process. Additionally, CO32- can finitely activate PS but generally slows TCP degradation and inhibit pyrite oxidation releasing Fe process. This study provides a theoretical basis for the degradation of TCP using pyrite-activated PS.


Assuntos
Ferro , Oxirredução , Sulfatos , Sulfetos , Poluentes Químicos da Água , Ferro/química , Sulfetos/química , Poluentes Químicos da Água/química , Sulfatos/química , Purificação da Água/métodos
3.
Environ Sci Technol ; 57(22): 8256-8268, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37212265

RESUMO

Due to the dispersed distribution of e-waste and crude disassembly in traditional recycling, valuable metals are not traceable during their life cycle. Meanwhile, incomplete separation between metals and nonmetals reduces the economic value of disassembled parts, which leads to higher environmental costs for metal refining. Therefore, this study proposes a precise disassembly of e-waste to finely classify and recover metals in an environmentally friendly way. First, the macroscopic material flow of e-waste in China (source, flow, scrap, and recycling gap) was measured based on data collected by the government and 109 formal recycling enterprises. The sustainable recycling balance time points for e-waste recycling and scrap volumes were forecast by introducing an additional recycling efficiency. By 2030, the total scrap volume of e-waste is predicted to reach 133.06 million units. For precise disassembly, the main metals and their percentages from these typical e-wastes were measured based on material flow analysis combined with experimental methods. After precise disassembly, the proportion of reusable metals increases significantly. The CO2 emission of precise disassembly with the smelting process was the lowest compared with crude disassembly with smelting and ore metallurgy. The greenhouse gas for secondary metals Fe, Cu, and Al was 830.32, 1151.62, and 716.6 kg CO2/t metal, respectively. The precise disassembly of e-waste is meaningful for building a future resource sustainable society and for carbon emission reduction.


Assuntos
Resíduo Eletrônico , Resíduo Eletrônico/análise , Dióxido de Carbono , Metais , Meio Ambiente , China , Reciclagem/métodos
4.
Environ Res ; 221: 114820, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36400226

RESUMO

The accumulation of tetrabromobisphenol A (TBBPA) in soil posed a serious threat to ecosystem and human health. Sodium alginate/sulfide coated iron nanoparticles (SA@S-Fe NPs) was synthesized by a two-step modification of Fe NPs prepared with tung tree leaves extracting solution, and utilized as a persulfate (PS) activator to degrade TBBPA in soil. Response surface methodology (RSM) optimization showed a theoretical maximum TBBPA degradation reaching 99.79% at the 34.28 °C, SA@S-Fe NPs and PS additions of 3.57 g kg-1 and 36.35 mM, respectively. The degradation mechanism of TBBPA suggested that the main reactive species produced in the SA@S-Fe NPs/PS system were •OH, SO4•-, and O2•-. Proposed mechanisms for the degradation of TBBPA in soil involved debromination, benzene rings split, hydroxylation, demethylation, and complete mineralization to CO2 and H2O. We also further studied the effect to soil physicochemical properties and morphology structure during TBBPA degradation in SA@S-Fe NPs/PS system, which showed that SOM, TN, C/N and TOC slightly reduced, the heavy metals Fe, Cu and Zn still existed in stable residue form, and the soil morphology showed a certain degree of aggregation. Therefore SA@S-Fe NPs/PS technology can effectively degrade soil TBBPA, maintain soil fertility, curb the migration of heavy metals, and environmental risks.


Assuntos
Metais Pesados , Nanopartículas , Bifenil Polibromatos , Humanos , Ferro/química , Solo/química , Alginatos , Ecossistema , Bifenil Polibromatos/metabolismo , Sulfetos
5.
Chemosphere ; 284: 131166, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34175513

RESUMO

Tetrabromobisphenol A (TBBPA) greatly impacts on ecosystems and human health due to its high environmental toxicity and persistence. Persulfate (PS) advanced oxidation technology to remove organic pollutants in soils has received intense attention. In this study, nanoscale zero-valent iron (nZVI) was synthesized through the borohydride reduction method to explore its activating potential towards PS to accelerate the degradation of TBBPA in soils. The degradation behaviors of TBBPA in soils were investigated by batch experiments. The degradation efficiency of TBBPA (5 mg kg-1) was 78.32% within 12 h under the following reaction conditions: 3 g kg-1 nZVI, 25 mM PS, and pH 5.5 at 25 °C. Notably, PS can be used effectively, and the pH changed slightly in the reaction system. Oxidative degradation of TBBPA is favored at higher temperatures and lower pH values, while it is inhibited when the amount of catalyst increases significantly. The coexisting heavy metal ions such as Zn(II) and Ni(II) inhibit TBBPA degradation, while Cu(II) accelerates the degradation. Radical scavenging and electron spin resonance (ESR) tests further confirmed the generation of SO4·-, ·OH, and O2·- in nZVI activated PS. The intermediates identified by gas chromatograph-mass spectrometry analysis indicated that TBBPA via debromination and the cleavage between the isopropyl group and one of the benzene rings complete degradation. These findings provide new insight into the mechanism of nZVI activation of PS and will promote its application in the degradation of refractory organic compounds.


Assuntos
Bifenil Polibromatos , Poluentes Químicos da Água , Ecossistema , Humanos , Ferro , Solo , Poluentes Químicos da Água/análise
6.
J Environ Sci (China) ; 101: 217-226, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33334517

RESUMO

A total of 713 research papers about field monitor experiments of heavy metals in farmland and urban soils in China, published from 2000 to 2019, were obtained. A meta-analysis was conducted to evaluate the level of China's heavy metal pollution in soils, mainly focusing on eight heavy metals. It was found that the average concentrations of cadmium (Cd), lead (Pb), zinc (Zn), copper (Cu), mercury (Hg), chromium (Cr), nickel (Ni), and arsenic (As) in China were 0.19, 30.74, 85.86, 25.81, 0.074, 67.37, 27.77 and 8.89 mg/kg, respectively. Compared with the background value (0.097 mg/kg), the Cd content showed a twofold (0.19 mg/kg) rise in farmland soils and a threefold (0.29 mg/kg) rise in urban soils. The decreasing order of the mean Igeo was Cd (1.77) > Pb (0.62) > Zn (0.60) > Cu (0.58) > Hg (0.57) > Cr (0.54) > Ni (0.47) > As (0.28). Nearly 33.54% and 44.65% of sites in farmland and urban soils were polluted with Cd. The average concentrations of eight heavy metals were not sensitive change in recent two decades in farmland and urban soils. The average Pn values for urban (2.52) and farmland (2.15) soils showed that heavy metal pollution in urban soils was more serious than that in farmland, and the middle Yangtze River regions, where industrial activity dominates, were the most polluted. The meta-analysis comprehensively evaluated the current pollution situation of soil heavy metal, and provided important basis for soil management and environment prevention in China.


Assuntos
Metais Pesados , Poluentes do Solo , China , Monitoramento Ambiental , Fazendas , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise
7.
Environ Sci Technol ; 53(24): 14595-14603, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31721570

RESUMO

This study proposed an electrochemical technique for investigating the mechanism of nonradical oxidation of organics with peroxydisulfate (PDS) activated by carbon nanotubes (CNT). The electrochemical property of twelve phenolic compounds (PCs) was evaluated by their half-wave potentials, which were then correlated to their kinetic rate constants in the PDS/CNT system. Integrated with quantitative structure-activity relationships (QSARs), electron paramagnetic resonance (EPR), and radical scavenging tests, the nature of nonradical pathways of phenolic compound oxidation was unveiled to be an electron-transfer regime other than a singlet oxygenation process. The QSARs were established according to their standard electrode potentials, activation energy, and pre-exponential factor. A facile electrochemical analysis method (chronopotentiometry combined with chronoamperometry) was also employed to probe the mechanism, suggesting that PDS was catalyzed initially by CNT to form a CNT surface-confined and -activated PDS (CNT-PDS*) complex with a high redox potential. Then, the CNT-PDS* complex selectively abstracted electrons from the co-adsorbed PCs to initiate the oxidation. Finally, a comparison of PDS/CNT and graphite anodic oxidation under constant potentials was comprehensively analyzed to unveil the relative activity of the nonradical CNT-PDS* complex toward the oxidation of different PCs, which was found to be dependent on the oxidative potentials of the CNT-PDS* complex and the adsorbed organics.


Assuntos
Nanotubos de Carbono , Eletrodos , Transporte de Elétrons , Elétrons , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...