Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5952, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38467676

RESUMO

Neonatal Jaundice is a common occurrence in neonates. High excess bilirubin would lead to hyperbilirubinemia, leading to irreversible adverse damage such as kernicterus. Therefore, it is necessary and important to monitor neonates' bilirubin levels in real-time for immediate intervention. However, current screening protocols have their inherent limitations, necessitating more convenient measurements. In this proof-of-concept study, we evaluated the feasibility of using machine learning for the screening of hyperbilirubinemia in neonates from smartphone-acquired photographs. Different machine learning models were compared and evaluated to gain a better understanding of feature selection and model performance in bilirubin determination. An in vitro study was conducted with a bilirubin-containing tissue phantom to identify potential biological and environmental confounding factors. The findings of this study present a systematic characterization of the confounding effect of various factors through separate parametric tests. These tests uncover potential techniques in image pre-processing, highlighting important biological features (light scattering property and skin thickness) and external features (ISO, lighting conditions and white balance), which together contribute to robust model approaches for accurately determining bilirubin concentrations. By obtaining an accuracy of 0.848 in classification and 0.812 in regression, these findings indicate strong potential in aiding in the design of clinical studies using patient-derived images.


Assuntos
Hiperbilirrubinemia Neonatal , Icterícia Neonatal , Kernicterus , Recém-Nascido , Humanos , Bilirrubina , Algoritmos , Smartphone , Hiperbilirrubinemia Neonatal/diagnóstico
2.
J Am Chem Soc ; 145(46): 25341-25351, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37956115

RESUMO

Metallo-covalent organic frameworks (metallo-COFs) are organometallic scaffolds in which covalently bonded organic frameworks are interwoven with metal-coordinated pendant groups. Unlike the rigid ligands traditionally used for metal coordination, the utilization of "soft" ligands allows for configurable topology and pore structure in metallo-COFs, particularly when the ligands are generated in situ during dynamic synthesis. In this study, we present the rational synthesis of metallo-COFs based on pyridine-2,6-diimine (pdi), wherein the incorporation of Zn2+ ions and in situ-generated tridentate ligands (pdi) yields metallo-COFs with a square-like lattice. In the absence of Zn2+ ions, a topological isomer COF with a Kagome lattice is instead produced. Thus, the presence or absence of Zn2+ ions allows us to switch between two distinct morphologies corresponding to metallo-COF or COF. In comparison to Brønsted acid-catalyzed COF, which necessitates postmetallization for loading metal ions, the metal-templated COF synthesis method yields COFs with improved crystallinity and approximately 1:1 [Zn2+]/ligand composition. Building upon the metal-templated COF synthesis approach, we successfully synthesized pdiCOF-Zn-2 and pdiCOF-Zn-3, which possess square-like and honeycomb lattices, respectively. The enhanced crystallinity and near 1:1 [Zn2+]/ligand composition of pdiCOF-Zn-3 (honeycomb) facilitate its application as ion transport channels.

3.
Angew Chem Int Ed Engl ; 62(9): e202217869, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36625674

RESUMO

Non-aqueous Li-air batteries, despite their high energy density and low cost, have not been deployed practically due to their instability in ambient air, where moisture causes parasitic reactions and shortens their life drastically. Here, we demonstrate the rational design of nanoporous covalent organic frameworks (COFs) as effective gas diffusion layers (GDLs) to address this constraint. The COF GDLs, with a tailor-made pore size of ≈1.4 nm and superhydrophobicity, can limit the intrusion of organic electrolytes and moisture into the gas diffusion channels, enabling high capacity, fast kinetics, and excellent stability of the Li-air batteries. Moreover, we achieve multi-atmosphere Li-air batteries, which can stably cycle under open ambient air (relative humidity up to 95 %) and even in various atmospheres with looping oxygen, humid air, and carbon dioxide. The design principles of our COF GDLs can be universally applied in energy storage and electrochemical systems using organic electrolytes.

4.
ACS Nano ; 17(3): 2901-2911, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36638084

RESUMO

To realize the practical application of lithium-sulfur (Li-S) batteries, there is a need to inhibit uncontrolled Li deposition by facilitating Li-ion migration, and suppress the irreversible consumption of cathodes by preventing polysulfide shuttling. However, a permselective artifical membrane or interlayer which features fast ion transport but low polysulfide crossover is elusive. Here, we report the design and synthesis of a fluorinated covalent organic framework (4F-COF)-based membrane with a high permselectivity and increased battery lifespan. Combining density functional theory calculation, molecular dynamic simulation, and in situ Raman analysis, we demonstrate that fluorinated COF eliminates polysulfides shutting and dendritic lithium formation. Consequently, Li symmetrical cells demonstrate Li plating/stripping behaviors for 2000 h under 1 mA cm-2. More importantly, Li-S batteries based on the 4F-COF/PP separator achieve cycling retention of 82.3% over 1000 cycles at 2 C, rate performance of 568.0 mA h g-1 at 10 C, and an areal capacity of 7.60 mA h cm-2 with a high sulfur loading (∼9 mg cm-2). This work demonstrates that functionalizing nanochannels in COFs can impart permselectivity for energy storage applications.

5.
Angew Chem Int Ed Engl ; 61(17): e202202073, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35191149

RESUMO

Developing universal stimuli-responsive materials capable of emitting a broad spectrum of colors is highly desirable. Herein, we deliberately grafted a conformation-adaptable organic chromophore into the established coordination space of a flexible metal-organic framework (MOF). In terms of the coupled structural transformations and the space confinement, the chromophore in the MOF matrix underwent well-regulated conformational changes under physical and chemical stimuli, simultaneously displaying thermo-, piezo-, and solvato-fluoro-chromism with color tunability over the visible range. Owing to the resilient nature and the reduced dimensionality of the selected coordination space, all three color modulations behaved in a sensitive and self-reversible manner, each following a linear correlation of the emission maximum with stimulus. Single-crystal X-ray diffraction of the variable-temperature structures and solvent-inclusion crystals elucidated the intricate color varying mechanisms.

6.
Angew Chem Int Ed Engl ; 58(17): 5614-5618, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30779418

RESUMO

We herein report a new coordination network that deforms in a smooth and reversible manner under either thermal or pressure stimulation. Concomitantly, the organic fluorophores coordinatively bound to the channel in a face-to-face arrangement respond to this structural deformation by finely adapting their conformation and arrangement. As a result, the material exhibits a remarkable dual-stimuli-responsive luminescence shift across almost the entire visible region: The emission color of the crystal gradually changes from cyan to green upon heating and then to red upon pressure compression. Furthermore, each stage exhibits a linear dependence of both the emission maximum and intensity on the stimulus and is fully reversible.

7.
Biosens Bioelectron ; 61: 321-7, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24907540

RESUMO

In the present day, oligonucleotide-encapsulated silver clusters (DNA-AgNCs) have been widely applied into bio-analysis as a signal producer. Herein, we developed a novel method to synthesize DNA-AgNCs encapsulated by long-chain cytosine (C)-rich DNA. Such DNA was polymerized in a template-free way by terminal deoxynucleotidyl transferase (TdT). We demonstrated that TdT-polymerized long chain C-rich DNA can serve as an excellent template for AgNCs synthesis. Based on this novel synthesis strategy, we developed a label-free and turn-on fluorescence assay to detect TdT activity with ultralow limit of detection (LOD) of 0.0318 U and ultrahigh signal to background (S/B) of 46.7. Furthermore, our proposed method was extended to a versatile biosensing strategy for turn-on nucleases activity assay based on the enzyme-activated TdT polymerization. Two nucleases, EcoRI and ExoIII as model of endonuclease and exonuclease, respectively, have been detected with high selectivity and competitive low LOD of 0.0629 U and 0.00867 U, respectively. Our work demonstrates the feasibility of TdT polymerization-based DNA-AgNCs synthesis strategy as a versatile and potent biosensing platform to detect the activity of DNA-related enzymes.


Assuntos
Técnicas Biossensoriais/métodos , DNA/química , Desoxirribonuclease EcoRI/análise , Ensaios Enzimáticos/métodos , Exodesoxirribonucleases/análise , Nanoestruturas/química , Prata/química , DNA/metabolismo , Desoxirribonuclease EcoRI/metabolismo , Exodesoxirribonucleases/metabolismo , Limite de Detecção , Nanoestruturas/ultraestrutura , Polimerização , Espectrometria de Fluorescência/métodos
8.
Biosens Bioelectron ; 55: 187-94, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24384258

RESUMO

A novel homogenous fluorescent sensor for signal-on detection of Cu(2+) has been developed based on intra-molecular G-quadruplex formed by DNA-templated click reaction and crystal violet (CV) as label-free signal reporter. The clickable DNA probe consists of two G-rich strands (A and B) bearing azide and alkyne group, respectively, and a template strand (C) locating two proximate reactants by pairing with A and B. The sequences of A and B are derived from asymmetric split of the G-quadruplex sequence (TTAGGG)4. In the presence of Cu(2+), the whole G-quadruplex sequence A-B is generated by chemical ligation of A and B via copper ion-catalyzed alkyne-azide cycloaddition, then released from template by toehold strand displacement, and consequently forming a stable intra-molecular G-quadruplex, which binds with CV to generate a strong fluorescent signal. Oppositely, weak fluorescence was obtained without Cu(2+) because of unstable intermolecular G-quadruplex formed by A and B and lack of lateral loop connection. Therefore, the Cu(2+) can be sensitively and specifically detected by the fluorescence of the CV-stained G-quadruplex with a low detection limit of 65nM and a linear range of 0.1-3µM. This method rationally integrated the DNA-templated synthesis and G-quadruplex structure-switch, presenting a simple and promising approach for biosensor development.


Assuntos
Química Click/métodos , Cobre/análise , DNA/química , Corantes Fluorescentes/síntese química , Quadruplex G , Impressão Molecular/métodos , Espectrometria de Fluorescência/métodos , Cobre/química , DNA/ultraestrutura , Corantes Fluorescentes/análise , Íons , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA