Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Cancer Res ; 12(8): 3729-3744, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119843

RESUMO

Due to the rapid proliferation, cancer cells have increased anabolic biosynthesis, which requires anaplerosis to replenish precursor intermediates. The major anaplerotic sources are pyruvate and glutamine, which require the catalysis of pyruvate carboxylase (PC) and glutaminase (GLS) respectively. In GLS-suppressed cancer cells, the PC-mediated pathway for anaplerosis is crucial to maintain cell growth and proliferation. Here, we investigated the regulatory role and molecular mechanism of N-myc downstream-regulated gene 2 (NDRG2) in PC and PC-mediated anaplerosis. NDRG2 interacted with PC and induced the degradation of PC in glutamine-deprived cells. NDRG2 also inhibited the activity of PC and PC-mediated anaplerosis. As a result, NDRG2 significantly inhibited the malignant growth and proliferation of glioma cells in combination with a glutamine antagonist. In addition, NDRG2 more significantly inhibited the protein level of PC in isocitrate dehydrogenase 1 (R132H)-mutant glioma cells than in wild-type glioma cells. These findings indicate that the molecular mechanism of NDRG2 inhibits PC-mediated anaplerosis and collaborates with glutamine antagonist to inhibit the malignant proliferation of glioma cells, thus providing a theoretical and experimental basis for targeting anaplerosis in glioma therapy.

2.
Biomed Res Int ; 2022: 8920117, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35535036

RESUMO

The coronavirus disease (COVID-19) which emerged in Wuhan, China, in December 2019, is widely controlled now in China. However, the global epidemic is still severe. To study and comment on Hubei's approaches for responding to the disease, the paper considered some factors such as suspected cases (part of them are influenza patients or common pneumonia patients, etc.), quarantine, patient classification (three types), clinically diagnosed cases, and lockdown of Wuhan and Hubei. After that, the paper established an SELIHR model based on the surveillance data of Hubei published by the Hubei Health Commission from 10 January 2020 to 30 April 2020 and used the fminsearch optimization method to estimate the optimal parameters of the model. We obtained the basic reproduction number ℛ 0 = 3.1571 from 10 to 22 January. ℛ 0 was calculated as 2.0471 from 23 to 27 January. From 28 January to 30 April, ℛ 0 = 1.5014. Through analysis, it is not hard to find that the patients without classification during the period of confirmed cases will result in the cumulative number of cases in Hubei to increase. In addition, regarding the lockdown measures implemented by Hubei during the epidemic, our simulations also show that if the lockdown time of either Hubei or Wuhan is advanced, it will effectively curb the spread of the epidemic. If the lockdown measures are not taken, the total cumulative number of cases will increase substantially. From the results of the study, it can be concluded that the lockdown, patient classification, and the large-scale case screening are essential to slow the spread of COVID-19, which can provide references for other countries or regions.


Assuntos
COVID-19 , Número Básico de Reprodução , COVID-19/epidemiologia , China/epidemiologia , Controle de Doenças Transmissíveis/métodos , Humanos , Quarentena , SARS-CoV-2
3.
Biochem Biophys Res Commun ; 523(1): 78-85, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-31831170

RESUMO

Triple-negative breast cancer (TNBC) represents a unique subgroup of breast cancers (BCa) with potential to be highly proliferative and invasive. Patient with TNBC are prone to developing resistance to chemotherapy. Therefore, TNBC usually has a poor clinical outcome. The key factors driving these malignant features remain poorly understood. In this study, we report for the first time that expression levels of FOXE3, a recently identified lens-specific transcription factor, were preferentially upregulated in TNBC tissues compared to non-TNBC tissues, and this upregulation correlated well to a poor overall/recurrence-free survival in patients. Depletion of FOXE3 in TNBC cell lines promoted cell death, cell cycle arrest, and potentiated sensitivity to docetaxel (DTX), a first-line chemotherapeutic drug for TNBC treatment. These alterations in cell growth/survival properties were accompanied by induction of CDKN1B, a gene encoding the tumor suppressor p27. We further provided the molecular evidence that FOXE3 could directly bind to the CDKN1B promoter and negatively regulate its transcription in TNBC cells. Importantly, knockdown of combined p27 and FOXE3 reversed the DTX-induced cell growth inhibition observed upon FOXE3 knockdown, indicating that the FOXE3's effects on TNBC progression were mediated mainly through transcriptional regulation of the p27 signaling. Together, our findings suggest that FOXE3 may function as a potent oncogene during the progression of TNBC, likely affecting cell proliferation, invasion and chemosensitivity, and functioning at least in part through transcriptional repression of p27 signaling.


Assuntos
Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Oncogenes/genética , Neoplasias de Mama Triplo Negativas/genética , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Docetaxel/farmacologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Fatores de Transcrição Forkhead/deficiência , Humanos , Relação Estrutura-Atividade , Ativação Transcricional , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...