Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Virus Res ; 331: 199126, 2023 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-37105436

RESUMO

The emergence of Carbapenem-resistant Klebsiella pneumoniae (CRKP) represents a threat to public health. Polymyxin-B is generally considered a last-resort antibiotic. In this study, we isolated a carbapenem- and polymyxin-B resistant K. pneumoniae phage BL02 for the first time in Southwestern China and evaluated its biological characteristics and whole-genome sequence. Polymyxin-B resistant K. pneumoniae, (CK02), was isolated from the blood of a male with severe septic shock, and phage BL02 was screened and purified from the hospital sewage. BL02 could lyse 40 out of 46 CRKP isolates (86.96%) and has high activity in the pH range of 6-10 and the temperature range of 4-55 °C. The latency period of BL02 was about 10 min and the lysis period was about 50 min. The genome results showed that BL02 was a linear dsDNA with a total length of 175,595 bp and a GC content of 41.83%. A total of 275 ORFs were predicted and no tRNA, rRNA, drug resistance genes, or virulence genes were found in the genome. Phylogenetic analysis showed that BL02 belongs to the family Straboviridae. Treatment of infected mice with two antibiotics (tigecycline or ceftazidime/avibactam) resulted in 7-day survival rates of 28.57% and 42.86%, respectively. In contrast, the survival rate of mice in the single-dose BL02-treated group was 71.43%. In summary, this preclinical study isolated a phage capable of lysing polymyxin-B resistant K. pneumoniae and validated its safety and efficacy in an in vivo model, which provides a reference for further research on controlling MDR pathogens.


Assuntos
Bacteriófagos , Infecções por Klebsiella , Masculino , Animais , Camundongos , Polimixina B/farmacologia , Polimixina B/uso terapêutico , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Klebsiella pneumoniae/genética , Esgotos , Bacteriófagos/genética , Filogenia , Infecções por Klebsiella/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana
2.
World J Gastroenterol ; 28(30): 4211-4220, 2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-36157104

RESUMO

BACKGROUND: Traumatic neuromas result from nerve injury after trauma or surgery but rarely occur in the bile duct. However, it is challenging to diagnose traumatic neuromas correctly preoperatively. Although some previous reports have described the imaging features of traumatic neuroma in the bile duct, no features of traumatic neuromas in the bile duct have been identified by using contrast-enhanced ultrasound (CEUS) imaging before. CASE SUMMARY: A 55-year-old male patient presented to our hospital with a 3-mo history of abdominal distension and anorexia and history of cholecystectomy 4 years ago. Grayscale ultrasound demonstrated mild to moderate intrahepatic bile duct dilatation. Meanwhile, a hyperechoic nodule was found in the upper extrahepatic bile duct. The lesion approximately 0.8 cm × 0.6 cm with a regular shape and clear margins. The nodule of the bile duct showed slight hyperenhancement in the arterial phase and isoenhancement in the venous phase on CEUS. Laboratory tests showed that alanine aminotransferase and aspartate aminotransferase were increased significantly, while the tumor marker carbohydrate antigen 19-9 was increased slightly. Then, hilar bile duct resection and end-to-end bile ductal anastomosis were performed. The histological examination revealed traumatic neuroma of the extrahepatic bile duct. The patient had an uneventful recovery after surgery. CONCLUSION: The current report will help enhance the current knowledge regarding identifying traumatic neuromas by CEUS imaging and review the related literature.


Assuntos
Neoplasias dos Ductos Biliares , Ductos Biliares Extra-Hepáticos , Neuroma , Alanina Transaminase , Aspartato Aminotransferases , Neoplasias dos Ductos Biliares/diagnóstico por imagem , Neoplasias dos Ductos Biliares/etiologia , Neoplasias dos Ductos Biliares/cirurgia , Ductos Biliares Extra-Hepáticos/diagnóstico por imagem , Ductos Biliares Extra-Hepáticos/patologia , Ductos Biliares Extra-Hepáticos/cirurgia , Antígeno CA-19-9 , Carboidratos , Humanos , Masculino , Pessoa de Meia-Idade , Neuroma/diagnóstico por imagem , Neuroma/etiologia , Neuroma/cirurgia
3.
Crit Care ; 22(1): 173, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29980222

RESUMO

BACKGROUND: In the early stage of severe burn, patients often exhibit a high level of inflammatory mediators in blood and are likely to develop sepsis. High-volume haemofiltration (HVHF) can eliminate these inflammatory mediators. We hypothesised that early application of HVHF may be beneficial in reducing sepsis and improving the prognosis of patients with severe burns. METHODS: Adults patients with burns ≥ 50% total burn surface area (TBSA) and in whom the sum of deep partial and full-thickness burn areas was ≥ 30% were enrolled in this randomised prospective study, and they were divided into control (41 cases) and HVHF (41 cases) groups. Patients in the control group received standard management for major burns, whereas the HVHF group additionally received HVHF treatment (65 ml/kg/h for 3 consecutive days) within 3 days after burn. The incidence of sepsis and mortality, some laboratory data, levels of inflammatory cytokines in the blood, HLA-DR expression on CD14+ peripheral blood monocytes, the proportion of CD25+Foxp3+ in CD4+ T lymphocytes, and the counts of CD3+, CD4+ and CD8+ T lymphocytes were recorded within 28 days post-burn. RESULTS: The incidence of sepsis, septic shock and duration of vasopressor treatment were decreased significantly in the HVHF group. In addition, in the subgroup of patients with burns ≥ 80% TBSA, the 90-day mortality showed significant decreases in the HVHF group. The ratio of arterial oxygen partial pressure to the fraction of inspiration oxygen was improved after HVHF treatment. In the patients who received HVHF treatment, the blood levels of inflammatory cytokines, including tumour necrosis factor-α, interleukin (IL)-1ß, IL-6 and IL-8, as well as the blood level of procalcitonin were found to be lower than in the control group. Moreover, higher HLA-DR expression on CD14+ monocytes and a lower proportion of CD25+Foxp3+ in CD4+ T lymphocytes were observed in the patients in the HVHF group. CONCLUSIONS: Early application of HVHF benefits patients with severe burns, especially for those with a greater burn area (≥ 80% TBSA), decreasing the incidence of sepsis and mortality. This effect may be attributed to its early clearance of inflammatory mediators and the recovery of the patient's immune status. TRIAL REGISTRATION: Chinese Clinical Trial Register, ChiCTR-TRC-12002616 . Registered on 24 October 2012.


Assuntos
Queimaduras/complicações , Hemofiltração/normas , Sepse/terapia , Adulto , Queimaduras/mortalidade , Queimaduras/terapia , Citocinas/análise , Citocinas/sangue , Feminino , Hemofiltração/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Escores de Disfunção Orgânica , Pró-Calcitonina/análise , Pró-Calcitonina/sangue , Prognóstico , Estudos Prospectivos , Prevenção Secundária/métodos , Prevenção Secundária/normas , Sepse/etiologia , Sepse/mortalidade , Índice de Gravidade de Doença , Estatísticas não Paramétricas
4.
Zhongguo Gu Shang ; 31(5): 452-457, 2018 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-29890806

RESUMO

OBJECTIVE: To investigate the clinical efficacy of acupotomy stress position percutaneous dynamic release for severe shoulder periarthritis. METHODS: From April 2012 to August 2016, 160 patients with severe shoulder periarthritis were randomly divided into treatment group and control group. Among them, 80 patients in treatment group were treated with acupotomy stress position percutaneous dynamic release including 32 males and 48 females with an average of(52.47±9.04)years old ranging from 40 to 74 years old;the courses of disease was(20.72±9.55)months on average. The other 80 patients in control group were treated with simple joint loosening according to Maitland technique in grade III-IV therapy, once a day, 15 to 20 min each time, and 10 d for 1 course, for a total of 2 courses, including 33 males and 47 females with an average of (53.19±10.18) years old ranging from 42 to 75 years old; the average course of disease was (21.98 ±8.99) months. After operation, the shoulder muscles training and shoulder joint activity training were routinely conducted, the treatment lasted for 3 weeks. The visual analogue scale(VAS) and Constant-Murley shoulder function score were observed and compared between the two groups before treatment and 3 weeks, 3, 6 months after treatment. RESULTS: The VAS scores of the treatment group at 3 weeks, 3 and 6 months after treatment were all lower than those of the control group(P<0.05). The shoulder joint function Constant-Murley scores of the treatment group at 3 weeks, 3 and 6 months after treatment were higher than those of the control group (P<0.05); the result was excellent in 59 cases, good in 18 cases, fair in 3 cases in the treatment group; excellent in 15 cases, good in 31 cases, fair in 23 cases, poor in 11 cases in the control group, and the difference between the two groups was statistically significant(P<0.01). CONCLUSIONS: Treatment of severe shoulder periarthritis with acupotomy stress position percutaneous dynamic release can obviously improve the shoulder joint function and pain, according to the different parts of the shoulder joint pain and function limitation, the corresponding shoulder stress and body position should be designed and maintained during the treatment process, and the angle of stress position gradually increased by loosening the adhesion, which is the key to ensure the curative effect.


Assuntos
Terapia por Acupuntura , Periartrite , Articulação do Ombro , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Periartrite/terapia , Ombro , Dor de Ombro
5.
J Control Release ; 268: 198-211, 2017 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-29061511

RESUMO

Malignant proliferation and metastasis in non-small cell lung carcinoma (NSCLC) are great challenges for effective clinical treatment through conventional chemotherapy. The combinational therapy strategy of RNA interfering (RNAi) technology and chemotherapeutic agents have been reported to be promising for effective cancer therapy. In this study, based on multifunctional nanoparticles (NPs), the simultaneous delivery of etoposide (ETP) and anti-Enhancer of Zeste Homologue 2 (EZH2) siRNA for the effective treatment of orthotopic lung tumor was achieved. The NPs exhibited pH/redox dual sensitivity verified by particle size changes, morphological changes, and in vitro release of drugs. Confocal microscopy analysis confirmed that the NPs exhibited endosomal escape property and on-demand intracellular drug release behavior, which can protect siRNA from degradation and facilitate the chemotherapeutic effect respectively. In vitro tumor cell motility study demonstrated that EZH2 siRNA loaded in NPs can decrease the migration and invasion capabilities of tumor cells by downregulating the expression of EZH2 mRNA and protein. In particular, an antiproliferation study revealed that the co-delivery of siRNA and ETP in the multifunctional NPs can induce a synergistic therapeutic effect on NSCLC. In vivo targeting evaluation showed that cRGDyC-PEG modification on NPs exhibited a low distribution in normal organs and an obvious accumulation in orthotopic lung tumor. Furthermore, targeted NPs co-delivering siRNA and ETP showed superior inhibition on tumor growth and metastasis and produced minimal systemic toxicity. These findings indicated that multifunctional NPs can be utilized as a co-delivery system, and that the combination of EZH2 siRNA and ETP can effectively treat NSCLC.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Etoposídeo/administração & dosagem , Nanopartículas/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Células A549 , Animais , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Terapia Combinada , Liberação Controlada de Fármacos , Etoposídeo/química , Feminino , Humanos , Camundongos Nus , Nanopartículas/química , Polímeros/administração & dosagem , Polímeros/química , RNA Interferente Pequeno/química
6.
Am J Transl Res ; 9(5): 2535-2547, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28560003

RESUMO

Severe burns may lead to intestinal inflammation and oxidative stress resulting in intestinal barrier damage and gut dysfunction. In the management of severe burns, therapies are needed to attenuate whole-body inflammatory responses and control the burden of oxidative stress. In this study, we evaluated the effects of oral glutamine (Gln) with probiotics on burn-induced intestinal inflammation and oxidative stress using a Wistar rat burn injury model. We then explored potential molecular mechanisms for the effects of glutamine and probiotics on intestinal tissue inflammation and oxidative stress. We found that glutamine and probiotics together significantly inhibited nitric oxide (NO) content; reduced levels of the inflammatory factors TNF-α, IL-6, and IL-8; and altered expression of oxidative stress factors including reactive oxygen species and superoxide dismutase. We found that the apoptotic proportion of intestinal epithelial cells in severely burned subjects was notably decreased following treatment with glutamine plus probiotics. We also found that glutamine and probiotics given together markedly reduced NO content by down-regulating the expression of iNOS in blood and intestinal tissue. These findings indicate that regulation of the iNOS gene plays a pivotal role in inflammation and oxidative stress in the response to severe burns in the Wistar rat. We then further investigated the mechanism by which combined therapy with glutamine and probiotics might reduce expression of iNOS and found that this treatment resulted in increased methylation of the iNOS gene. The methylation level of the iNOS gene was found to be regulated via differential expression of DNMT1 and Tet1. Collectively, our results suggest that combined therapy with glutamine and probiotics can markedly reduce the synthesis of NO, suppressing intestinal inflammation and oxidative stress in the Wistar rat burn injury model.

7.
Int J Nanomedicine ; 12: 4241-4256, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28652730

RESUMO

Physicochemical properties, including particle size, zeta potential, and drug release behavior, affect targeting efficiency, cellular uptake, and antitumor effect of nanocarriers in a formulated drug-delivery system. In this study, a novel stepwise pH-responsive nanodrug delivery system was developed to efficiently deliver and significantly promote the therapeutic effect of doxorubicin (DOX). The system comprised dimethylmaleic acid-chitosan-urocanic acid and elicited stepwise responses to extracellular and intracellular pH. The nanoparticles (NPs), which possessed negative surface charge under physiological conditions and an appropriate nanosize, exhibited advantageous stability during blood circulation and enhanced accumulation in tumor sites via enhanced permeability and retention effect. The tumor cellular uptake of DOX-loaded NPs was significantly promoted by the first-step pH response, wherein surface charge reversion of NPs from negative to positive was triggered by the slightly acidic tumor extracellular environment. After internalization into tumor cells, the second-step pH response in endo/lysosome acidic environment elicited the on-demand intracellular release of DOX from NPs, thereby increasing cytotoxicity against tumor cells. Furthermore, stepwise pH-responsive NPs showed enhanced antiproliferation effect and reduced systemic side effect in vivo. Hence, the stepwise pH-responsive NPs provide a promising strategy for efficient delivery of antitumor agents.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/administração & dosagem , Animais , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Quitosana/química , Doxorrubicina/química , Doxorrubicina/farmacocinética , Portadores de Fármacos/química , Avaliação Pré-Clínica de Medicamentos/métodos , Liberação Controlada de Fármacos , Feminino , Concentração de Íons de Hidrogênio , Malonatos/química , Camundongos Endogâmicos BALB C , Nanopartículas/química , Tamanho da Partícula , Distribuição Tecidual , Ácido Urocânico/química
8.
Int J Nanomedicine ; 12: 3375-3393, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28490877

RESUMO

Multidrug resistance (MDR) is a major obstacle for the clinical therapy of malignant human cancers. The discovery of RNA interference provides efficient gene silencing within tumor cells for reversing MDR. In this study, a new "binary polymer" low-density lipoprotein-N-succinyl chitosan-cystamine-urocanic acid (LDL-NSC-SS-UA) with dual pH/redox sensitivity and targeting effect was synthesized for the co-delivery of breast cancer resistance protein small interfering RNA (siRNA) and paclitaxel (PTX). In vivo, the co-delivering micelles can accumulate in tumor tissue via the enhanced permeability and retention effect and the specific recognition and combination of LDL and LDL receptor, which is overexpressed on the surface of tumor cell membranes. The siRNA-PTX-loaded micelles inhibited gene and drug release under physiological conditions while promoting fast release in an acid microenvironment or in the presence of glutathione. The micelles escaped from the lysosome through the proton sponge effect. Additionally, the micelles exhibited superior antitumor activity and downregulated the protein and mRNA expression levels of breast cancer resistance protein in MCF-7/Taxol cells. The biodistribution and antitumor studies proved that the siRNA-PTX-loaded micelles possessed prolonged circulation time with a remarkable tumor-targeting effect and effectively inhibited tumor growth. Therefore, the novel dual pH/redox-sensitive polymers co-delivering siRNA and PTX with excellent biocompatibility and effective reversal of MDR demonstrate a considerable potential in cancer therapy.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos/química , Paclitaxel/administração & dosagem , Polímeros/química , RNA Interferente Pequeno/administração & dosagem , Animais , Linhagem Celular Tumoral , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Feminino , Humanos , Concentração de Íons de Hidrogênio , Lipoproteínas LDL , Células MCF-7/efeitos dos fármacos , Camundongos Nus , Micelas , Oxirredução , Paclitaxel/química , Paclitaxel/farmacocinética , Polímeros/administração & dosagem , Interferência de RNA , RNA Interferente Pequeno/genética , Distribuição Tecidual
9.
J Biomed Mater Res B Appl Biomater ; 105(7): 2093-2106, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27405391

RESUMO

P-glycoprotein (P-gp) plays an importantrole in multidrug resistance (MDR), proved to be one of the major obstacles in cancer chemotherapy. Cationic polymers could specifically deliver siRNA to tumor cells and thus reverse MDR by the downregulation of P-gp. In this study, a triblock copolymer micelle was prepared based on the polymer of N-succinyl-chitosan-poly-l-lysine-palmitic acid (NSC-PLL-PA) to deliver siRNA-P-gp (siRNA-micelle) or doxorubicin (Dox-micelle). The resulting micelle exhibited an efficient binding ability for siRNA and high encapsulation efficiency for Dox, with an average particle size of ∼170 nm. siRNA-micelle and Dox-micellewere instable at low pH, thereby enhancing tumor accumulation and intracellular release of the encapsulated siRNA and Dox. siRNA-micelle micelles could enhance the knockdown efficacy of siRNA by improving the transfection efficiency, downregulating P-gp expression, and passing the drug efflux transporters, thereby improving the therapeutic effects of Dox-micelle. However, P-gp could transfer from HepG2/ADM to HepG2 cells independent of the expression of mdr1, and the acquired resistance could permit tumor cells to survive and develop intrinsic P-gp-mediated resistance, thereby limiting the desired efficiency of chemotherapeutics. This study demonstrated the effectiveness of siRNA-micelle for tumor-targeted delivery, MDR reversal, and provided an effective strategy for the treatment of cancers that develop MDR. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2093-2106, 2017.


Assuntos
Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Micelas , Proteínas de Neoplasias , Neoplasias , RNA Interferente Pequeno , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Células Hep G2 , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia
10.
J Biomed Mater Res B Appl Biomater ; 105(5): 1114-1125, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27008163

RESUMO

The development of effective and stable carriers of small interfering RNA (siRNA) is important for treating cancer with multidrug resistance (MDR). We developed a new gene and drug co-delivery system and checked its characteristics. Low-density lipoprotein (LDL) was coupled with N-succinyl chitosan (NSC) Lipoic acid (LA) micelles and co-delivered MDR1 siRNA and paclitaxel (PTX-siRNA/LDL-NSC-LA) to enhance antitumor effects by silencing the MDR gene of tumors (Li et al., Adv Mater 2014;26:8217-8224). In our study, we developed a new type of containing paclitaxel-loaded micelles and siRNA-loaded LDL nanoparticle. This "binary polymer" is pH and reduction dual-sensitive core-crosslinked micelles. PTX-siRNA/LDL-NSC-LA had an average particle size of (171.6 ± 6.42) nm, entrapment efficiency of (93.92 ± 1.06) %, and drug-loading amount of (12.35% ± 0.87) %. In vitro, MCF-7 cells, high expressed LDL receptor, were more sensitive to this delivery system than to taxol® and cell activity was inhibited significantly. Fluorescence microscopy showed that PTX-siRNA/LDL-NSC-LA was uptaken very conveniently and played a key role in antitumor activity. PTX-siRNA/LDL-NSC-LA protected the siRNA from degradation by macrophage phagocytosis and evidently down-regulated the level of mdr1 mRNA as well as the expression of P-gp. We tested the target ability of PTX-siRNA/LDL-NSC-LA in vivo in tumor-bearing nude mice. Results showed that this system could directly deliver siRNA and PTX to cancer cells. Thus, new co-delivering siRNA and antitumor drugs should be explored for solving MDR in cancer. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1114-1125, 2017.


Assuntos
Quitosana , Técnicas de Transferência de Genes , Lipoproteínas LDL , Micelas , Proteínas de Neoplasias , Neoplasias Experimentais , Paclitaxel/farmacologia , RNA Interferente Pequeno , Ácido Tióctico , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/biossíntese , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Animais , Quitosana/química , Quitosana/farmacologia , Feminino , Humanos , Lipoproteínas LDL/química , Lipoproteínas LDL/farmacologia , Células MCF-7 , Camundongos , Camundongos Nus , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/genética , Ácido Tióctico/química , Ácido Tióctico/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
ACS Appl Mater Interfaces ; 8(47): 32146-32158, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27933846

RESUMO

The efficient delivery of antitumor agents to tumor sites faces numerous obstacles, such as poor cellular uptake and slow intracellular drug release. In this regard, smart nanoparticles (NPs) that respond to the unique microenvironment of tumor tissues have been widely used for drug delivery. In this study, novel charge-reversal and reduction-responsive histidine-grafted chitosan-lipoic acid NPs (HCSL-NPs) were selected for efficient therapy of breast cancer by enhancing cell internalization and intracellular pH- and reduction-triggered doxorubicin (DOX) release. The surface charge of HCSL-NPs presented as negative at physiological pH and reversed to positive at the extracellular and intracellular pH of the tumor. In vitro release investigation revealed that DOX/HCSL-NPs demonstrated a sustained drug release under the physiological condition, whereas rapid DOX release was triggered by both endolysosome pH and high-concentration reducing glutathione (GSH). These NPs exhibited enhanced internalization at extracellular pH, rapid intracellular drug release, and improved cytotoxicity against 4T1 cells in vitro. Excellent tumor penetrating efficacy was also found in 4T1 tumor spheroids and solid tumor slices. In vivo experiments demonstrated that HCSL-NPs exhibited excellent tumor-targeting ability in tumor tissues as well as excellent antitumor efficacy and low systemic toxicity in breast tumor-bearing BALB/c mice. These results indicated that the novel charge-reversal and reduction-responsive HCSL-NPs have great potential for targeted and efficient delivery of chemotherapeutic drugs in cancer treatments.


Assuntos
Nanopartículas , Animais , Doxorrubicina , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos BALB C
12.
Int J Pharm ; 511(2): 728-40, 2016 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-27484835

RESUMO

Internal stimuli, such as intracellular lysosomal pH, enzyme, redox and reduction, can be applied to improve biological specificity of chemotherapeutic drugs for cancer therapy. Thus, functionalized copolymers based on their response to specific microenvironment of tumor regions have been designed as smart drug vesicles for enhanced anti-cancer efficiency and reduced side effects. Herein, we reported dually pH/reduction-responsive novel micelles based on self-assembly of carboxymethyl chitosan-cysteamine-N-acetyl histidine (CMCH-SS-NA) and doxorubicin (DOX). The tailor-made dually responsive micelles demonstrated favorable stability in normal physiological environment and triggered rapid drug release in acidic and/or reduction environment. Additionally, the nanocarriers responded to the intracellular environment in an ultra-fast manner within several minutes, which led to the pinpointed release of DOX in tumor cells effectively and ensured higher DOX concentrations within tumor areas with the aid of targeted delivery, thereby leading to enhanced tumor ablation. Thus, this approach with sharp drug release behavior represented a versatile strategy to provide a promising paradigm for cancer therapy.


Assuntos
Doxorrubicina/farmacologia , Doxorrubicina/farmacocinética , Micelas , Microambiente Tumoral/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Quitosana/análogos & derivados , Quitosana/química , Cisteamina/química , Doxorrubicina/química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos , Feminino , Histidina/química , Concentração de Íons de Hidrogênio , Fígado/metabolismo , Camundongos , Oxirredução , Ratos , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Sci Rep ; 6: 23859, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-27030638

RESUMO

Co-delivery of chemotherapeutics and siRNA with different mechanisms in a single system is a promising strategy for effective cancer therapy with synergistic effects. In this study, a triblock copolymer micelle was prepared based on the polymer of N-succinyl chitosan-poly-L-lysine-palmitic acid (NSC-PLL-PA) to co-deliver doxorubicin (Dox) and siRNA-P-glycoprotein (P-gp) (Dox-siRNA-micelle). Dox-siRNA-micelle was unstable in pH 5.3 medium than in pH 7.4 medium, which corresponded with the in vitro rapid release of Dox and siRNA in acidic environments. The antitumor efficacy of Dox-siRNA-micelle in vitro significantly increased, especially in HepG2/ADM cells, which was due to the downregulation of P-gp. Moreover, almost all the Dox-siRNA-micelles accumulated in the tumor region beyond 24 h post-injection, and the co-delivery system significantly inhibited tumor growth with synergistic effects in vivo. This study demonstrated the effectiveness of Dox-siRNA-micelles in tumor-targeting and MDR reversal, and provided a promising strategy to develop a co-delivery system with synergistic effects for combined cancer therapy.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Antibióticos Antineoplásicos/farmacologia , Terapia Combinada/métodos , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Neoplasias Hepáticas/terapia , RNA Interferente Pequeno/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Expressão Gênica , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus , Micelas , RNA Interferente Pequeno/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Int J Nanomedicine ; 11: 325-36, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26855571

RESUMO

In this study, harmine liposomes (HM-lip) were prepared through the thin-film hydration-pH-gradient method and then coated with N-trimethyl chitosan (TMC). Particle size, zeta potential, entrapment efficiency, and in vitro release of HM-lip and TMC-coated harmine liposomes (TMC-HM-lip) were also determined. Sprague Dawley rats were further used to investigate the pharmacokinetics in vivo. Retention behavior in mouse gastrointestinal tract (GIT) was studied through high-performance liquid chromatography and near-infrared imaging. Degradation was further evaluated through incubation with Caco-2 cell homogenates, and a Caco-2 monolayer cell model was used to investigate the uptake and transport of drugs. HM-lip and TMC-HM-lip with particle size of 150-170 nm, an entrapment efficiency of about 81%, and a zeta potential of negative and positive, respectively, were prepared. The release of HM from HM-lip and TMC-HM-lip was slower than that from HM solution and was sensitive to pH. TMC-HM-lip exhibited higher oral bioavailability and had prolonged retention time in GIT. HM-lip and TMC-HM-lip could also protect HM against degradation in Caco-2 cell homogenates. The uptake amount of TMC-HM-lip was higher than that of HM and HM-lip. TMC-HM-lip further demonstrated higher apparent permeability coefficient (P(app)) from the apical to the basolateral side than HM and HM-lip because of its higher uptake and capability to open tight junctions in the cell monolayers. TMC-HM-lip can prolong the retention time in the GIT, protect HM against enzyme degradation, and improve transport across Caco-2 cell monolayers, thus enhancing the oral bioavailability of HM.


Assuntos
Quitosana/química , Trato Gastrointestinal/efeitos dos fármacos , Harmina/metabolismo , Lipossomos/química , Administração Oral , Animais , Disponibilidade Biológica , Células CACO-2 , Permeabilidade da Membrana Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Portadores de Fármacos/química , Trato Gastrointestinal/citologia , Trato Gastrointestinal/metabolismo , Humanos , Técnicas In Vitro , Lipossomos/administração & dosagem , Camundongos , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley
15.
Yao Xue Xue Bao ; 51(4): 642-9, 2016 04.
Artigo em Chinês | MEDLINE | ID: mdl-29860751

RESUMO

cRGD-carboxymethyl chitosan-palmitic acid (cRGD-CMCh-PA) was synthesized and a pH- sensitive paclitaxel-loaded cRGD-CMCh-PA micelles(PTX-cRGD-CMCh-PA) was prepared with the film dispersion method; related substances were characterized by FT-IR and (1)H NMR. PTX-cRGD-CMCh-PA micelles were studied with the particle size distribution, zeta potential, morphology and release behavior in vitro was investigated by the method of equilibrium dialysis. In vitro cytotoxicity of different formulations on A549 cells was tested by MTT assay. The uptake process of micelles was explored using confocal microscopy and a live cell station was used to observe the dynamic phagocytosis. The subcutaneous and orthotropic tumor models were built to study the distribution of Di R-labeled micelles by near-infrared fluorescence(NIR) imaging system. The FT-IR spectra and (1)H NMR spectra confirmed the successful conjugation of cRGD-CMCh-PA polymer and the degree of carboxymethyl and the palmitic acid grafted on chitosan were 45.0% and 15.0%. PTX-cRGD-CMCh-PA micelles were prepared with particle size of(162.9 ± 1.5) nm, zeta potential of +26.3 m V and encapsulation efficiency and the drug loading of 99.67% and 28.5%, respectively. The micelles released slowly in pH 7.4 whose release curves were accorded with the Higuchi equation; they had an initial burst effect in second hours and showed a pH sensitive release behavior in pH 5.3. The IC(50) of PXT-CMCh-PA and PTX-cRGD-CMCh-PA were 2.077 µg·mL(-1) and 0.876 µg·mL(-1), respectively. The cells uptake process of micelles in A549 cells revealed that the micelles were mainly co-located with lysosome and PTX-cRGD-CMCh- PA showed much better targeting effect. The NIR fluorescence imaging results showed that the micelles had a good targeting effect on both subcutaneous and orthotropic tumors. In this study, a novel copolymer cRGD- CMCh-PA was synthesized with a sustained and pH-dependent drug release activity which would potentially become a new carrier for hydrophobic drugs.


Assuntos
Quitosana/análogos & derivados , Portadores de Fármacos/química , Oligopeptídeos/química , Paclitaxel/administração & dosagem , Ácido Palmítico/química , Células A549 , Antineoplásicos Fitogênicos/administração & dosagem , Quitosana/química , Liberação Controlada de Fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Micelas , Tamanho da Partícula , Polímeros , Espectroscopia de Infravermelho com Transformada de Fourier
16.
Sci Rep ; 5: 17904, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26639052

RESUMO

An antibody that specifically interacts with an antigen could be applied to an active targeting delivery system. In this study, CD147 antibody was coupled with α-hed chitosan nanoparticles (α-Hed-CS-NPs). α-Hed-CS-CD147-NPs were round and spherical in shape, with an average particle size of 148.23 ± 1.75 nm. The half-maximum inhibiting concentration (IC50) of α-Hed-CS-CD147-NPs in human liver cancer cell lines HepG2 and SMMC-7721 was lower than that of free α-Hed and α-Hed-CS-NPs. α-Hed-induced cell death was mainly triggered by apoptosis. The increase in intracellular accumulation of α-Hed-CS-CD147-NPs was also related to CD147-mediated internalization through the Caveolae-dependent pathway and lysosomal escape. The higher targeting antitumor efficacy of α-Hed-CS-CD147-NPs than that α-Hed-CS-NPs was attributed to its stronger fluorescence intensity in the tumor site in nude mice.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Basigina/imunologia , Quitosana/química , Endocitose/efeitos dos fármacos , Neoplasias Hepáticas/patologia , Nanopartículas/química , Ácido Oleanólico/análogos & derivados , Saponinas/farmacologia , Animais , Anexina A5/metabolismo , Apoptose/efeitos dos fármacos , Citometria de Fluxo , Fluorescência , Células Hep G2 , Humanos , Imageamento Tridimensional , Espaço Intracelular/metabolismo , Camundongos Nus , Microscopia Confocal , Nanopartículas/ultraestrutura , Ácido Oleanólico/síntese química , Ácido Oleanólico/química , Ácido Oleanólico/farmacologia , Tamanho da Partícula , Propídio/metabolismo , Saponinas/síntese química , Saponinas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Espectroscopia de Luz Próxima ao Infravermelho , Frações Subcelulares/metabolismo
17.
Int J Pharm ; 492(1-2): 141-51, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26188316

RESUMO

This study aimed to prepare efficient cRGDyK peptide-decorated micelles for the targeted therapy of non-small-cell lung cancer (NSCLC). An amphiphilic copolymer N-succinyl-palmitoyl-chitosan (SPCS) was synthesized and characterized. cRGDyK peptide is a ligand that can target tumors via specific binding integrin receptor overexpressed on tumor neovascularization and cells. cRGDyK-functionalized SPCS micelles loaded with paclitaxel (PTX/cRGDyK-SPCS) were prepared by film dispersion method and then characterized according to morphology, size, and zeta potential. PTX/cRGDyK-SPCS micelles presented pH-triggered drug release behavior under acidic conditions. The accumulation of micelles detected by laser confocal fluorescence microscopy and flow cytometry showed that cRGDyK-SPCS micelles were easily taken up by A549 cells marked with the luciferase gene (luc-A549). Meanwhile, co-localization of the micelles and lysosomes was recorded dynamically using a live cell station. MTT assays and cell apoptosis studies revealed that cell viability was significantly inhibited by PTX/cRGDyK-SPCS micelles. More importantly, in vivo animal studies showed that cRGDyK-SPCS micelles mainly accumulated in the orthotopic tumor site. PTX/cRGDyK-SPCS micelles exhibited better anti-tumor activity in subcutaneous and orthotopic lung tumors compared with PTX/SPCS micelles and Taxol(®). These results suggested that PTX/cRGDyK-SPCS micelles had better cancer targeting capacity and superior anti-tumor efficacy. Thus, these micelles have great potential as novel carriers in delivering anti-tumor drugs.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Quitosana/análogos & derivados , Quitosana/administração & dosagem , Paclitaxel/administração & dosagem , Peptídeos Cíclicos/administração & dosagem , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/uso terapêutico , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Quitosana/uso terapêutico , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos Nus , Micelas , Microtúbulos/efeitos dos fármacos , Paclitaxel/química , Paclitaxel/uso terapêutico , Peptídeos Cíclicos/química , Peptídeos Cíclicos/uso terapêutico , Carga Tumoral/efeitos dos fármacos
18.
Int J Nanomedicine ; 9: 2919-32, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24966673

RESUMO

N-Succinyl-chitosan (NSC) was synthesized and NSC nanoparticles (NPs) with loaded osthole (Ost) (Ost/NSC-NPs) were prepared by emulsion solvent diffusion. Subsequently, low-density lipoprotein (LDL)-mediated NSC-NPs with loaded Ost (Ost/LDL-NSC-NPs) were obtained by coupling LDL with Ost/NSC-NPs through amide linkage. The average particle size of Ost/NSC-NPs was approximately 145 nm, the entrapment efficiency was 78.28%±2.06%, and the drug-loading amount was 18.09%±0.17%. The release of Ost from Ost/NSC-NPs in vitro showed a more evident sustained effect than the native material. The half maximal inhibitory concentration of Ost/LDL-NSC-NPs was only 16.23% that of the free Ost at 24 hours in HepG2 cells. Ost inhibited HepG2 cell proliferation by arresting cells in the synthesis phase of the cell cycle and by triggering apoptosis. Cellular uptake and subcellular localization in vitro and near-infrared fluorescence real-time imaging in vivo showed that Ost/LDL-NSC-NPs had high targeting efficacy. Therefore, LDL-NSC-NPs are a promising system for targeted Ost delivery to liver tumor.


Assuntos
Quitosana/química , Cumarínicos/administração & dosagem , Lipoproteínas/farmacocinética , Nanoconjugados/química , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Receptores de LDL/metabolismo , Animais , Cumarínicos/química , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Lipoproteínas/química , Camundongos , Camundongos Nus , Nanocápsulas/administração & dosagem , Nanocápsulas/química , Nanoconjugados/administração & dosagem , Nanoconjugados/ultraestrutura , Neoplasias Experimentais/patologia , Resultado do Tratamento
19.
Biomaterials ; 35(22): 5965-76, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24768047

RESUMO

Developing safe and effective carriers of small interference RNA (siRNA) is a significant demand for the systemic delivery of siRNA. In this study, low-density lipoprotein (LDL) was isolated from human plasma and loaded with cholesterol-conjugated siRNA to silence the multidrug resistant gene of tumors. Chol-siRNA/LDL-coupled N-succinyl chitosan nanoparticles loaded with doxorubicin (Dox-siRNA/LDL-SCS-NPs) were then prepared and characterised. The Dox-siRNA/LDL-SCS-NPs had average particle size of 206.4 ± 9.2 nm, entrapment efficiency of 71.06% ± 1.42%, and drug-loading amount of 12.35% ± 0.87%. In vitro antitumor activity revealed that cell growth was significantly inhibited. The accumulation of Dox by fluorescence microscopy and flow cytometry showed that LDL-coupled nanoparticles were more easily taken up than Dox-SCS-NPs. Results of confocal microscopy and reverse transcription-PCR revealed the highly efficient uptake of siRNA and the decrease in mdr1 mRNA expression. LDL-coupled nanoparticles protected siRNA from macrophage phagocytosis by dynamic observation using live cell station. In vivo tumor-targeting suggested that Cy7-labelled Dox-LDL-SCS-NPs were markedly accumulated in an analyzed in situ liver tumor model. Results indicated that LDL-SCS-NPs were effective tumor-targeting vectors and that the preparation form may provide a new strategy for co-delivering siRNA and antitumor drugs.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Quitosana/química , Doxorrubicina/administração & dosagem , Lipoproteínas LDL/química , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas/química , RNA Interferente Pequeno/administração & dosagem , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Resistência a Múltiplos Medicamentos , Feminino , Células Hep G2 , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus , RNA Interferente Pequeno/genética
20.
Expert Opin Drug Deliv ; 11(6): 843-54, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24655139

RESUMO

BACKGROUND: Polymeric micelles is a safe and effective delivery system, which belong to the targeted delivery system (TDS). An anticancer drug, harmine(HM) is a hydrophobic drug with much adverse effects when used for treatment of liver cancer. Chitosan (CS) is a polysaccharide and can be modified to be an amphiphilic polmer which could self-assemble into micelles and be applied for delivery of hydrophobic drugs. OBJECTIVES: To synthesize three kinds of novel biodegradable polymers, designated as palmitoyl-trimethyl-CS (TPCS)1, TPCS2 and Lac-TPCS2, and investigate their efficiency and mechanism of delivery HM to liver tumors in vitro and in viro. RESULTS: The self-assembled micelles presented satisfactory particle size (∼ 200 nm) and drug release characteristics in vitro. It's proved that Lac-TPCS2/HM may enter HepG2 cell through endocytosis. Antitumor experiments in vivo revealed that Lac-TPCS2/HM could significantly inhibit tumor growth and extend the lifetime of mice bearing H22 tumors after intravenous administration. Subsequently in vivo near-infrared fluorescence imaging results demonstrated a satisfactory liver tumor-targeting effect of Lac-TPCS2/HM. CONCLUSION: Three novel polymers hold great potential in the development of nanomedicine for treatment of liver tumors, in particular Lac-TPCS2 exhibits the greatest antitumor potential through active target effect.


Assuntos
Antineoplásicos/administração & dosagem , Quitosana/química , Sistemas de Liberação de Medicamentos , Harmina/administração & dosagem , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Micelas , Inibidores da Monoaminoxidase/administração & dosagem , Ácido Palmítico/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Feminino , Harmina/química , Harmina/farmacocinética , Células Hep G2 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Neoplasias Hepáticas Experimentais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/farmacocinética , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...