Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 9: 1535, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30425657

RESUMO

Provisioning of sufficient lipids and vitellogenin to the oocytes is an indispensable process for fecundity of oviparous insects. Acute mobilization of lipid reserves in insects is controlled by the Brummer (Bmm), an orthologous of human adipose triglyceride lipase (ATGL). To investigate the functional roles of brummer-mediated lipolysis in the fecundity of the brown planthopper, Nilaparvata lugens, RNA interference (RNAi) analyses were performed with double-stranded RNA (dsRNA) against NlBmm in adult females. Knockdown of NlBmm expression resulted in obesity and blocked lipid mobilization in the fat body. In addition, NlBmm silencing led to retarded ovarian development with immature eggs and less ovarioles, decreased number of laid eggs, prolonged preoviposition period and egg duration. Furthermore, severe reductions of vitellogenin and its receptor abundance were observed upon NlBmm knockdown. The transcript levels of NlJHE (juvenile hormone esterase) which degrades JH were up-regulated, whereas the expression levels of JH receptors NlMet (Methoprene-tolerant) and NlTai (Taiman) and their downstream transcription factors NlKr-h1 (Krüppel-homolog 1) and NlBr (Broad-Complex) were down-regulated after suppression of NlBmm. JH-deficient females exhibited impaired vitellogenin expression, whereas JH exposure stimulated vitellogenin biosynthesis. Moreover, JH topical application partially rescued the decrease in vitellogenin expression in the NlBmm-deficient females. These results demonstrate that brummer-mediated lipolytic system is essential for lipid mobilization and energy homeostasis during reproduction in N. lugens. In addition to the classical view of brummer as a direct lipase with lipolysis activity, we propose here that brummer-mediated lipolysis works through JH signaling pathway to activate vitellogenesis and oocyte maturation that in turn regulates female fecundity.

2.
Arch Insect Biochem Physiol ; 99(2): e21481, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29956367

RESUMO

Energy homeostasis is an essential characteristic of all organisms, requiring fluctuation in energy accumulation, mobilization, and exchange with the external environment. In insects, energy mobilization is under control of the lipase brummer (bmm), which regulates nutritional status by hydrolyzing the ester bonds in triacylglycerol (TAG). In the present study, we investigated the role of bmm in the lipid mobilization and starvation resistance in the brown planthopper (BPH; Nilaparvata lugens), which is economically one of the most important rice pests in Asia. A severe decrease in TAG and glyceride contents was observed in the starved BPHs, while there was a partial rescue after refeeding. The starvation condition caused a significant increase in the expression levels of Nlbmm, and supplement of food after starvation dramatically reduced the Nlbmm expression. Sucrose rescue after starvation significantly suppressed the expression of Nlbmm, while caused an accumulation of TAG and glyceride. Knockdown of Nlbmm by double-stranded RNA treatment extended the lifespan to starvation, whereas it increased the level of TAG and glyceride in the BPHs. The decreased lipolysis rate by dsNlbmm-treated BPHs eventually resulted in increase of starvation resistance. These data demonstrated that the regulation of energy homeostasis by Nlbmm affects starvation resistance, probably through lipid mobilization control in N. lugens.


Assuntos
Metabolismo Energético , Hemípteros/fisiologia , Proteínas de Insetos/genética , Lipase/genética , Mobilização Lipídica , Animais , Feminino , Privação de Alimentos , Hemípteros/enzimologia , Hemípteros/crescimento & desenvolvimento , Proteínas de Insetos/metabolismo , Lipase/metabolismo , Ninfa/enzimologia , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia , Interferência de RNA , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-29230863

RESUMO

The brummer (bmm) genes encode the lipid storage droplet-associated triacylglycerols (TAG) lipases, which belong to the Brummer/Nutrin subfamily. These enzymes hydrolyze the ester bonds in TAG in lipid metabolism and act in insect energy homeostasis. Exposure to some agricultural chemicals leads to increased fecundity, which necessarily involves lipid metabolism, in some planthopper species. However, the biological roles of bmm in planthopper lipid storage and mobilization have not been investigated. Here, the open reading frame (ORF) of bmm (Nlbmm) was cloned and sequenced from the brown planthopper (BPH; Nilaparvata lugens). The ORF is 1014 bp encoding 338 amino acid residues. Nlbmm contained patatin domains and shared considerable evolutionary conservation with other insect bmms. Nlbmm is highly expressed in the fat body, consistent with its roles in lipid metabolism. Injection with Nlbmm double-stranded RNA (dsNlbmm) led to reduced Nlbmm mRNA accumulation, but did not influence expression of several genes related to lipid synthesis including acyl-CoA-binding protein (ACBP), acetyl-CoA carboxylase (ACC), and a lipophorin receptor (LpR). Nlbmm knockdown led to increased TAG contents in whole bodies, accumulation of total fat body lipid, and decreased hemolymph lipid content. Nlbmm knockdown did not influence the synthesis and distribution of glycerol. We infer that Nlbmm acts in TAG breakdown and fat metabolism in N. lugens.


Assuntos
Hemípteros/genética , Lipase/genética , Metabolismo dos Lipídeos/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Feminino , Expressão Gênica , Hemípteros/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Lipase/metabolismo , Filogenia , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA