Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neural Regen Res ; 17(2): 354-361, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34269210

RESUMO

Stem cell therapy is a promising strategy for the treatment of traumatic brain injury (TBI). However, animal experiments are needed to evaluate safety; in particular, to examine the immunogenicity and tumorigenicity of human umbilical cord mesenchymal stem cells (huMSCs) before clinical application. In this study, huMSCs were harvested from human amniotic membrane and umbilical cord vascular tissue. A rat model of TBI was established using the controlled cortical impact method. Starting from the third day after injury, the rats were injected with 10 µL of 5 × 106/mL huMSCs by cerebral stereotaxis or with 500 µL of 1 × 106/mL huMSCs via the tail vein for 3 successive days. huMSC transplantation decreased the serum levels of proinflammatory cytokines in rats with TBI and increased the serum levels of anti-inflammatory cytokines, thereby exhibiting good immunoregulatory function. The transplanted huMSCs were distributed in the liver, lung and brain injury sites. No abnormal proliferation or tumorigenesis was found in these organs up to 12 months after transplantation. The transplanted huMSCs negligibly proliferated in vivo, and apoptosis was gradually observed at later stages. These findings suggest that huMSC transplantation for the treatment of traumatic brain injury displays good safety. In addition, huMSCs exhibit good immunoregulatory function, which can help prevent and reduce secondary brain injury caused by the rapid release of inflammatory factors after TBI. This study was approved by the Ethics Committee of Wuhan General Hospital of PLA (approval No. 20160054) on November 1, 2016.

2.
J Phys Condens Matter ; 33(40)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34261050

RESUMO

Ultrathin ferroelectrics are of great technological interest for high-density electronics, particularly non-volatile memories and field-effect transistors. With the rapid development of micro-electronics technology, there is an urgent requirement for higher density electronic devices, which need ultra-thin ferroelectric materials films. However, as ferroelectric films have becomes thinner and thinner, electrical spontaneous polarization signals have been found in a few atomic layers or even monolayer structures. The mechanisms of detection and formation of these signals are not well understood and various controversial interpretations have emerged. In this review, we summarized the recent research progress in the ultra-thin film ferroelectric material, such as HfO2, CuInP2S6, In2Se3, MoTe2and BaTiO3. Various key aspects of ferroelectric materials are discussed, including crystal structure, ferroelectric mechanism, characterization, fabrication methods, applications, and future outlooks. We hope this review will offer ideas for further improvement of ferroelectric properties of ultra-thin films and promotes practical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA