Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22277283

RESUMO

Antibody titers wane after two-dose COVID-19 vaccinations, but individual variation in vaccine-elicited antibody dynamics remains to be explored. Here, we created a personalized antibody score that enables individuals to infer their antibody status by use of a simple calculation. We recently developed a mathematical model of B cell differentiation to accurately interpolate the longitudinal data from a community-based cohort in Fukushima, Japan, which consists of 2,159 individuals who underwent serum sampling two or three times after a two-dose vaccination with either BNT162b2 or mRNA-1273. Using the individually reconstructed time course of the vaccine-elicited antibody response, we first elucidated individual background factors that contributed to the main features of antibody dynamics, i.e., the peak, the duration, and the area under the curve. We found that increasing age was a negative factor and a longer interval between the two doses was a positive factor for individual antibody level. We also found that the presence of underlying disease and the use of medication affected antibody levels negatively, whereas the presence of adverse reactions upon vaccination affected antibody levels positively. We then applied to these factors a recently proposed computational method to optimally fit clinical scores, which resulted in an integer-based score that can be used to evaluate the antibody status of individuals from their basic demographic and health information. This score can be easily calculated by individuals themselves or by medical practitioners. There is a potential usefulness of this score for identifying vulnerable populations and encouraging them to get booster vaccinations. Significance statementDifferent individuals show different antibody titers even after the same COVID-19 vaccinations, making some individuals more prone to breakthrough infections than others. Such variability remains to be clarified. Here we used mathematical modeling to reconstruct individual post-vaccination antibody dynamics from a cohort of 2,159 individuals in Fukushima, Japan. Machine learning identified several positive and negative factors affecting individual antibody titers. Positive factors included adverse reactions after vaccinations and a longer interval between two vaccinations. Negative factors included age, underlying medical conditions, and medications. We combined these factors and developed an "antibody score" to estimate individual antibody dynamics from basic demographic and health information. This score can help to guide individual decision-making about taking further precautions against COVID-19.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22276266

RESUMO

Recent studies have provided insights into the effect of vaccine boosters on recall immunity. Given the limited global supply of COVID-19 vaccines, identifying vulnerable populations with lower sustained vaccine-elicited antibody titers is important for targeting individuals for booster vaccinations. Here we investigated longitudinal data in a cohort of 2,526 people in Fukushima, Japan, from April 2021 to December 2021. Antibody titers following two doses of a COVID-19 vaccine were repeatedly monitored and information on lifestyle habits, comorbidities, adverse reactions, and medication use was collected. Using mathematical modeling and machine learning, we stratified the time-course patterns of antibody titers and identified vulnerable populations with low sustained antibody titers. Moreover, we showed that only 5.7% of the participants in our cohort were part of the "durable" population with high sustained antibody titers, which suggests that this durable population might be overlooked in small cohorts. We also found large variation in antibody waning within our cohort. There is a potential usefulness of our approach for identifying the neglected vulnerable population.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21258858

RESUMO

ObjectivesTo compare the temporal changes of IgM, IgG, and IgA antibodies against the SARS-CoV-2 nucleoprotein, S1 subunit, and receptor binding domain and neutralizing antibodies (NAbs) against SARS-CoV-2 in patients with COVID-19. MethodsA total of five patients in Nissan Tamagawa Hospital, Tokyo, Japan confirmed COVID-19 from August 8, 2020 to August 14, 2020 were investigated. Serum samples were acquired multiple times from 0 to 76 days after symptom onset. Using a fully automated CLIA analyzer, we measured the levels of IgG, IgA, and IgM against the SARS-CoV-2 N, S1, and RBD and NAbs against SARS-CoV-2. ResultsThe levels of IgG antibodies against SARS-CoV-2 structural proteins increased over time in all cases but IgM and IgA levels against SARS-CoV-2 showed different increasing trends among individuals in the early stage. In particular, we observed IgA antibodies increasing before IgG and IgM in 3/5 cases. The NAb levels against SARS-CoV-2 increased and kept above 10 AU/mL more than around 70 days after symptom onset in all cases. Furthermore, in the early stage, NAb levels were more than cut off value in 4/5 COVID-19 patients some of whose antibodies against RBD didnt exceed 10 AU/mL. ConclusionsOur findings indicate that patients with COVID-19 should be examined for IgG, IgA and IgM antibodies against SARS-CoV-2 structural proteins and NAbs against SARS-CoV-2 in addition to conventional antibody testing methods for SARS-CoV-2 (IgG and IgM kits) to analyze the diversity of patients immune mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...