Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3447, 2023 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-37301885

RESUMO

Currently, the optimal lymphodepletion intensity for peripheral blood mononuclear cell-derived neoantigen-specific CD8 + T cell (Neo-T) therapy has yet to be determined. We report a single-arm, open-label and non-randomized phase 1 study (NCT02959905) of Neo-T therapy with lymphodepletion at various dose intensity in patients with locally advanced or metastatic solid tumors that are refractory to standard therapies. The primary end point is safety and the secondary end points are disease control rate (DCR), progression-free survival (PFS), overall survival (OS). Results show that the treatment is well tolerated with lymphopenia being the most common adverse event in the highest-intensity lymphodepletion groups. Neo-T infusion-related adverse events are only grade 1-2 in the no lymphodepletion group. The median PFS is 7.1 months (95% CI:3.7-9.8), the median OS is 16.8 months (95% CI: 11.9-31.7), and the DCR is 66.7% (6/9) among all groups. Three patients achieve partial response, two of them are in the no lymphodepletion group. In the group without lymphodepletion pretreatment, one patient refractory to prior anti-PD1 therapy shows partial response to Neo-T therapy. Neoantigen specific TCRs are examined in two patients and show delayed expansion after lymphodepletion treatment. In summary, Neo-T therapy without lymphodepletion could be a safe and promising regimen for advanced solid tumors.


Assuntos
Leucócitos Mononucleares , Neoplasias , Humanos , Projetos Piloto , Neoplasias/terapia , Linfócitos T CD8-Positivos , Intervalo Livre de Progressão
2.
J Clin Invest ; 132(15)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35727633

RESUMO

BACKGROUNDAdoptive cell therapy (ACT) with tumor-infiltrating lymphocytes (TILs) has achieved remarkable clinical efficacy in metastatic cancers such as melanoma and cervical cancer (CC). Here, we explored the safety, feasibility, and preliminary tumor response and performed translational investigations of adjuvant immunotherapy using infusion of autogenous TILs (auto-TILs) following concurrent chemoradiotherapy (CCRT) in patients with CC who had locally advanced disease.METHODSTwenty-seven patients with CC with stage III-IV disease were recruited in this single-center, phase I study. TILs were isolated from lesions in the uterine cervix and generated under good manufacturing practice (GMP) conditions and then infused after CCRT plus i.m. IL-2 injections.RESULTSTILs from 20 of the 27 patients were successfully expanded, with a feasibility of 74.1%. Twelve patients received TILs following CCRT. Adverse events (AEs) were primarily attributable to CCRT. Only 1 (8.3%) patient experienced severe toxicity with a grade 3 hypersensitivity reaction after TIL infusion. No autoimmune AEs, such as pneumonitis, hepatitis, or myocarditis, occurred, and there were no treatment-related mortalities. Nine of 12 patients (75.0%) attained a complete response, with a disease control duration of 9-22 months. Translational investigation showed that the transcriptomic characteristics of the infused TIL products and some immune biomarkers in the tumor microenvironment and serum of patients with CC at baseline were correlated with the clinical response.CONCLUSIONTIL-based ACT following CCRT was safe in an academic center setting, with potentially effective responses in patients with locally advanced CC. "Hot" inflammatory immune environments were beneficial to the clinical efficacy of TIL-based ACT as adjuvant therapy.TRIAL REGISTRATIONClinicalTrials.gov NCT04443296.FUNDINGNational Key R&D Program; Sci-Tech Key Program of the Guangzhou City Science Foundation; the Guangdong Province Sci-Tech International Key Program; the National Natural Science Foundation of China.


Assuntos
Imunoterapia , Neoplasias do Colo do Útero , Quimiorradioterapia , Feminino , Humanos , Imunoterapia/efeitos adversos , Linfócitos do Interstício Tumoral , Melanoma , Microambiente Tumoral , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/terapia
3.
Stem Cell Res Ther ; 12(1): 53, 2021 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-33422149

RESUMO

BACKGROUND: Mesenchymal stromal cell (MSC)-based therapies are being actively investigated in various inflammatory disorders. However, functional variability among MSCs cultured in vitro will lead to distinct therapeutic efficacies. Until now, the mechanisms behind immunomodulatory functional variability in MSCs are still unclear. METHODS: We systemically investigated transcriptomic variations among MSC samples derived from multiple tissues to reveal their effects on immunomodulatory functions of MSCs. We then analyzed transcriptomic changes of MSCs licensed with INFγ to identify potential molecular mechanisms that result in distinct MSC samples with different immunomodulatory potency. RESULTS: MSCs were clustered into distinct groups showing different functional enrichment according to transcriptomic patterns. Differential expression analysis indicated that different groups of MSCs deploy common regulation networks in response to inflammatory stimulation, while expression variation of genes in the networks could lead to different immunosuppressive capability. These different responsive genes also showed high expression variability among unlicensed MSC samples. Finally, a gene panel was derived from these different responsive genes and was able to regroup unlicensed MSCs with different immunosuppressive potencies. CONCLUSION: This study revealed genes with expression variation that contribute to immunomodulatory functional variability of MSCs and provided us a strategy to identify candidate markers for functional variability assessment of MSCs.


Assuntos
Células-Tronco Mesenquimais , Diferenciação Celular , Células Cultivadas , Humanos , Imunomodulação , Transdução de Sinais
4.
Cell Biosci ; 11(1): 24, 2021 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-33485387

RESUMO

BACKGROUND: Human pluripotent stem cell-derived limbal stem cells (hPSC-derived LSCs) provide a promising cell source for corneal transplants and ocular surface reconstruction. Although recent efforts in the identification of LSC markers have increased our understanding of the biology of LSCs, much more remains to be characterized in the developmental origin, cell fate determination, and identity of human LSCs. The lack of knowledge hindered the establishment of efficient differentiation protocols for generating hPSC-derived LSCs and held back their clinical application. RESULTS: Here, we performed a time-course single-cell RNA-seq to investigate transcriptional heterogeneity and expression changes of LSCs derived from human embryonic stem cells (hESCs). Based on current protocol, expression heterogeneity of reported LSC markers were identified in subpopulations of differentiated cells. EMT has been shown to occur during differentiation process, which could possibly result in generation of untargeted cells. Pseudotime trajectory analysis revealed transcriptional changes and signatures of commitment of hESCs-derived LSCs and their progeny-the transit amplifying cells. CONCLUSION: Single-cell RNA-seq revealed time-course expression changes and significant transcriptional heterogeneity during hESC-derived LSC differentiation in vitro. Our results demonstrated candidate developmental trajectory and several new candidate markers for LSCs, which could facilitate elucidating the identity and developmental origin of human LSCs in vivo.

5.
Acta Biomater ; 119: 432-443, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33148429

RESUMO

Strontium, a popular osteogenic component, has been incorporated into various types of orthopaedic biomaterials to enhance bone regeneration. Strontium performs dual effects in promoting bone formation and inhibiting bone resorption. Previous studies have focused on the effects of strontium ions (Sr2+) in regulating stem cell behavior to initiate regenerative capacity. However, its mechanisms for regulating the fate and homeostasis of stem cells have not been fully elucidated. In this study, the promotive effect of Sr2+ on the osteogenic differentiation of mesenchymal stem cells was confirmed both in vitro and in vivo. Interestingly, in response to Sr2+ treatment, stem cells performed asymmetric cell division to balance stemness maintenance and osteogenic differentiation. In initiating osteogenic differentiation, Sr2+ maintained more cells in the cell cycle by upregulating the population of S and G2/M phase cells, and this increase in the cell population contributed to enhanced osteogenic differentiation. The divided cells with different cell fates were observed, with one daughter cell maintained stemness, while the other committed to osteogenic lineage. Further investigation revealed that Sr2+ activated noncanonical Wnt signaling to regulate the expression and distribution of the Par complex, thus regulating cell division. As a result, the daughter cells committed to different cell fates due to the discriminately activation of osteogenic transcription factors caused by asymmetrically distributed Par3 and aPKC. The results of this study could facilitate the design of biomaterials for bone regeneration by providing a better understanding of cell fate determination regulated by strontium.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Divisão Celular Assimétrica , Diferenciação Celular , Estrôncio/farmacologia
6.
Adv Exp Med Biol ; 951: 31-45, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27837552

RESUMO

Stem cells are highly promising resources for application in cell therapy, regenerative medicine, drug discovery, toxicology and developmental biology research. Stem cell banks have been increasingly established all over the world in order to preserve their cellular characteristics, prevent contamination and deterioration, and facilitate their effective use in basic and translational research, as well as current and future clinical application. Standardization and quality control during banking procedures are essential to allow researchers from different labs to compare their results and to develop safe and effective new therapies. Furthermore, many stem cells come from once-in-a-life time tissues. Cord blood for example, thrown away in the past, can be used to treat many diseases such as blood cancers nowadays. Meanwhile, these cells stored and often banked for long periods can be immediately available for treatment when needed and early treatment can minimize disease progression. This paper provides an overview of the fundamental principles of stem cell banking, including: (i) a general introduction of the construction and architecture commonly used for stem cell banks; (ii) a detailed section on current quality management practices; (iii) a summary of questions we should consider for long-term storage, such as how long stem cells can be stored stably, how to prevent contamination during long term storage, etc.; (iv) the prospects for stem cell banking.


Assuntos
Bancos de Espécimes Biológicos/normas , Criopreservação/métodos , Sangue Fetal/citologia , Células-Tronco/citologia , Sobrevivência Celular , Seleção do Doador/organização & administração , Sangue Fetal/fisiologia , Humanos , Controle de Qualidade , Células-Tronco/fisiologia
7.
Carbohydr Polym ; 132: 295-303, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26256352

RESUMO

Antarctic krill chitosan (A-Chitosan) was first evaluated in its hemostatic effect in this study. The prepared A-Chitosan powder showed low level of crystallinity and significantly high water binding capacity as 1293% (w/w). By mice tail amputation model and blood coagulation timing experiment, it is showed that this chitosan accelerated the tail hemostasis by 55% and shortened the blood clotting time by 38%. This efficacy was better than two other commercial chitosans investigated and was corresponding to their water binding capacities. Through examining the effect of chitosan on blood components, it could be found that platelets adhesion was mainly affected by the water binding capacity, and red blood cells aggregation was dependent on their deacetylation degree. The physicochemical properties resulted in better hydration property of chitosan would improve its hemostatic effect. These results suggested that Antarctic krill chitosan is a good candidate for hemostatic application.


Assuntos
Quitosana/química , Quitosana/farmacologia , Agregação Eritrocítica/efeitos dos fármacos , Euphausiacea/química , Hemostáticos/química , Hemostáticos/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Animais , Testes de Coagulação Sanguínea , Hemorragia/tratamento farmacológico , Camundongos Endogâmicos C57BL , Água/química
8.
Nanoscale Res Lett ; 10: 203, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25977673

RESUMO

Nanotechnology has made a significant impact on the development of nanomedicine. Nonviral vectors have been attracting more attention for the advantage of biosafety in gene delivery. Polyethylenimine (PEI)-conjugated chitosan (chitosan-g-PEI) emerged as a promising nonviral vector and has been demonstrated in many tumor cells. However, there is a lack of study focused on the behavior of this vector in stem cells which hold great potential in regenerative medicine. Therefore, in this study, in vitro gene delivering effect of chitosan-g-PEI was investigated in bone marrow stem cells. pIRES2-ZsGreen1-hBMP2 dual expression plasmid containing both the ZsGreen1 GFP reporter gene and the BMP2 functional gene was constructed for monitoring the transgene expression level. Chitosan-g-PEI-mediated gene transfer showed 17.2% of transfection efficiency and more than 80% of cell viability in stem cells. These values were higher than that of PEI. The expression of the delivered BMP2 gene in stem cells enhanced the osteogenic differentiation. These results demonstrated that chitosan-g-PEI is capable of applying in delivering gene to stem cells and providing potential applications in stem cell-based gene therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...