Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 136: 112334, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38815350

RESUMO

PURPOSE: Organ fibrosis is a huge challenge in clinic. There are no drugs for fibrotic cataracts treatments in clinic. Nintedanib is approved by the FDA for pulmonary fibrosis treatments. This study aims to investigate the efficacy and mechanism of nintedanib on fibrotic cataracts. METHODS: Drug efficacy was validated through TGFß2-induced cell models and injury-induced anterior subcapsular cataract (ASC) mice. A slit lamp and the eosin staining technique were applied to access the degree of capsular fibrosis. The CCK-8 assay was used to evaluate the toxicity and anti-proliferation ability of the drug. The cell migration was determined by wound healing assay and transwell assay. The anti-epithelial mesenchymal transition (EMT) and anti-fibrosis efficacy were evaluated by qRT-PCR, immunoblot, and immunofluorescence. The inhibition of nintedanib to signaling pathways was certified by immunoblot. RESULTS: Nintedanib inhibited the migration and proliferation of TGFß2-induced cell models. Nintedanib can also repress the EMT and fibrosis of the lens epithelial cells. The intracameral injection of nintedanib can also allay the anterior subcapsular opacification in ASC mice. The TGFß2/ Smad and non-Smad signaling pathways can be blocked by nintedanib in vitro and in vivo. CONCLUSION: Nintedanib alleviates fibrotic cataracts by suppressing the TGFß2/ Smad and non-Smad signaling pathways. Nintedanib is a potential drug for lens fibrosis.


Assuntos
Movimento Celular , Transição Epitelial-Mesenquimal , Fibrose , Indóis , Cristalino , Fator de Crescimento Transformador beta2 , Animais , Indóis/farmacologia , Indóis/uso terapêutico , Cristalino/efeitos dos fármacos , Cristalino/patologia , Fator de Crescimento Transformador beta2/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Camundongos , Movimento Celular/efeitos dos fármacos , Fibrose/tratamento farmacológico , Humanos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular , Transdução de Sinais/efeitos dos fármacos , Catarata/tratamento farmacológico , Camundongos Endogâmicos C57BL , Células Epiteliais/efeitos dos fármacos , Modelos Animais de Doenças , Antifibróticos/farmacologia , Antifibróticos/uso terapêutico , Masculino
2.
Curr Eye Res ; 49(4): 391-400, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38095165

RESUMO

PURPOSE: Accumulated evidence has shown that microRNAs (miRNAs) are closely related to the pathogenesis and progression of senile cataracts. Here we investigate the effect of miR-29a-3p in cataractogenesis and determined the potential molecular mechanism involved. METHODS: In this study, we constructed a selenite cataract model in rats and obtained the miRNAs related to cataracts by whole transcriptome sequencing. To investigate the effect and mechanism of miR-29a-3p on cataracts, we performed several in vivo and in vitro experiments, including CCK8 assay, flow cytometry, luciferase reporter assay, Edu assay, and western blot analysis. RESULT: Sequencing data showed downregulation of miR-29a-3p in rats with selenite cataracts. Down-regulation of miR-29a-3p could promote lens epithelial cells (SRA01/04) proliferation and inhibit cell apoptosis, and miR-29a-3p silence could inhibit the development of cataracts. Additionally, CAND1 was a direct target gene for miR-29a-3p. CONCLUSION: These data demonstrate that miR-29a-3p inhibits apoptosis of lens epithelial cells by regulating CAND1, which may be a potential target for senile cataracts.


Assuntos
Catarata , MicroRNAs , Animais , Ratos , Regulação para Cima , Proliferação de Células , MicroRNAs/genética , Células Epiteliais/patologia , Catarata/genética , Catarata/patologia , Apoptose/genética , Ácido Selenioso
3.
Eye (Lond) ; 38(5): 885-892, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37853108

RESUMO

OBJECTIVE: To provide a reference for future policy and measure formulation by conducting a detailed analysis of the burden of vision loss due to cataract by year, age, and gender in China from 1990 to 2019. METHODS: Data on the prevalence and disability-adjusted life-years (DALYs) due to cataract in China and neighboring and other G20 countries were extracted from the 2019 Global Burden of Disease (GBD) study to observe the changing trends of vision loss. RESULTS: The number and rate of all-age prevalence and DALYs for cataract in China increased significantly from 1990 to 2019. The age-standardized DALYs rate witnessed a slowly declining trend by 10.16%. And the age-standardized prevalence increased by 14.35% over the 30-year period. Higher prevalence and DALYs were observed in female population from 1990 through 2019, with little improvement over the decades(all p < 0.001). The disease burden of cataract is higher in middle-aged and elderly people. Blindness accounted for the largest proportion of vision impairment burden caused by cataract in China. The age-standardized prevalence and DALY rate of cataract in China were lower than those in India and Pakistan, but higher than those in Russia, South Korea, North Korea, Singapore, and Japan. CONCLUSIONS: In the past 30 years, although the age-standardized DALYs rate has decreased slightly in China, the all-age prevalence and DALYs have both increased. This study highlights the importance of reducing cataract burden by providing timely and easily accessible quality care, especially in females and the elderly population.


Assuntos
Catarata , Carga Global da Doença , Pessoa de Meia-Idade , Idoso , Humanos , Feminino , Anos de Vida Ajustados por Qualidade de Vida , Catarata/complicações , Cegueira/epidemiologia , China/epidemiologia , Saúde Global
4.
BMC Ophthalmol ; 23(1): 461, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974089

RESUMO

BACKGROUND: A sight-threatening, cataract is a common degenerative disease of the ocular lens. This study aimed to explore the regulatory mechanism of age-related cataract (ARC) formation and progression. METHODS: Cataracts in Sprague Dawley rats were induced by adopting the method that injected selenite subcutaneously in the nape. We performed high-throughput RNA sequencing technology to identify the mRNA and microRNA(miRNA) expression profiles of the capsular membrane of the lens from Na2SeO3-induced and saline-injected Sprague Dawley rats. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were carried out to forecast the regulatory and functional role of mRNAs in cataracts by DAVID and Metascape. The protein-protein interaction(PPI) network of differentially expressed mRNA(DEmRNAs) was built via the STRING. Target miRNAs of hub genes were predicted by miRBD and TargetScan. Furthermore, differentially expressed miRNA(DEmiRNAs) were selected as hub genes' targets, validated by quantitative real-time polymerase chain reaction(qRT-PCR), and a DEmiRNA-DEmRNA regulatory network was constructed via Cytoscape. RESULT: In total, 329 DEmRNAs including 40 upregulated and 289 downregulated genes were identified. Forty seven DEmiRNAs including 29 upregulated and 18 downregulated miRNAs were detected. The DEmRNAs are involved in lens development, visual perception, and aging-related biological processes. A protein-protein interaction network including 274 node genes was constructed to explore the interactions of DEmRNAs. Furthermore, a DEmiRNA-DEmRNA regulatory network related to cataracts was constructed, including 8 hub DEmRNAs, and 8 key DEmiRNAs which were confirmed by qRT-PCR analysis. CONCLUSION: We identified several differentially expressed genes and established a miRNA-mRNA-regulated network in a Na2SeO3-induced Sprague Dawley rat cataract model. These results may provide novel insights into the clinical treatment of cataracts, and the hub DEmRNAs and key DEmiRNAs could be potential therapeutic targets for ARC.


Assuntos
Catarata , MicroRNAs , Ratos , Animais , MicroRNAs/genética , Ratos Sprague-Dawley , RNA Mensageiro/genética , Transcriptoma , Catarata/genética , Redes Reguladoras de Genes
5.
Exp Eye Res ; 235: 109640, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37673368

RESUMO

Cataract is the leading cause of blindness in the world, and there is a lack of effective treatment drugs. CircRNA plays an important part in a variety of diseases, however, the role of circRNA in cataracts remains largely unknown. In this study, we constructed a cataract model of rats and obtained the circRNAs related to cataracts by whole transcriptome sequencing and circRNA-mRNA co-expression network. To investigate the effect and mechanism of circRNA 06209 on cataracts, we performed several in vivo and in vitro experiments, including CCK8 assay, flow cytometry, dual luciferase reporter assay, RIP assay, actinomycin D assay, and Western blot analysis. We identify that a necroptosis-related circRNA, circRNA 06209, is down-regulated in cataracts. Vitro experiments showed that up-regulation of circRNA 06209 could promote cell proliferation and inhibit cell apoptosis. Vivo experiments revealed that circRNA 06209 overexpression could inhibit the development of cataracts. Mechanistically, circRNA 06209 acts as a miRNA sponge and competitively binds to miR-6848-5p to curb the inhibitory effect of miR-6848-5p on ALOX15, thereby affecting cell viability and apoptosis. This study found that circRNA 06209 plays a critical part in inhibiting cataracts through the miR-6848-5p/ALOX15 pathway, suggesting that circRNA 06209 may be a promising therapeutic target for cataracts.


Assuntos
Catarata , MicroRNAs , RNA Circular , Animais , Ratos , Apoptose , Catarata/genética , MicroRNAs/genética , RNA Circular/genética , Humanos , Ensaios Enzimáticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...