Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Cardiovasc Disord ; 24(1): 31, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183012

RESUMO

BACKGROUND: Anomalous origin of the left coronary artery from the pulmonary artery (ALCAPA) is a rare congenital cardiac anomaly, mortality rates in infancy reach approximately 90%, with only a small number of patients surviving into adulthood, therefore, most of the literature reports mainly focus on infantile type. CASE PRESENTATION: A 55-year-old female was admitted due to persistent repeated chest pain experienced and had worsened for unknown reasons. Color doppler echocardiography, coronary computed tomographic angiography, and coronary angiography confirmed the diagnosis of ALCAPA and concurrent right coronary artery-right atrial fistula. The symptoms of chest pain exhibited notable improvement subsequent to corrective surgery for the anomalous origin of the coronary artery. CONCLUSIONS: This report shows an unique case of ALCAPA in an adult patient, characterizing the condition's combination with a right coronary-right atrial fistula, and it is prone to misdiagnosis and misdiagnosis. We aim to provide valuable insights for clinical diagnosis and treatment of ALCAPA.


Assuntos
Síndrome de Bland-White-Garland , Artéria Pulmonar , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Artéria Pulmonar/diagnóstico por imagem , Artéria Pulmonar/cirurgia , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/cirurgia , Dor no Peito , Angiografia Coronária
2.
Biomed Pharmacother ; 162: 114733, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37087977

RESUMO

Doxorubicin (DOX) is an anthracycline antineoplastic agent that has limited clinical utility due to its dose-dependent cardiotoxicity. Although the exact mechanism remains unknown, inflammatory responses have been implicated in DOX-induced cardiotoxicity (DIC). In this study, we analyzed the transcriptomic, metabolomic as well as lipidomic changes in the DOX-treated mice to explore the underlying mechanisms of DIC. We found that continuous intraperitoneal DOX injections (3 mg/kg/d) for a period of five days significantly induced cardiac dysfunction and cardiac injury in male C57BL/6 J mice (8 weeks old). This corresponded to a significant increase in the myocardial levels of IL-4, IL-6, IL-10, IL-17 and IL-12p70. Furthermore, inflammation-related genes such as Ptgs2, Il1b, Cxcl5, Cxcl1, Cxcl2, Mmp3, Ccl2, Ccl12, Nfkbia, Fos, Mapk11 and Tnf were differentially expressed in the DOX-treated group, and enriched in the IL-17 and TNF signaling pathways. Besides, amino acids, peptides, imidazoles, toluenes, hybrid peptides, fatty acids and lipids such as Hex1Cer, Cer, SM, PG and ACCa were significantly associated with the expression pattern of inflammation-related genes. In conclusion, the integration of transcriptomic, metabolomic and lipidomic data identified potential new targets and biomarkers of DIC.


Assuntos
Cardiotoxicidade , Interleucina-17 , Camundongos , Masculino , Animais , Cardiotoxicidade/metabolismo , Interleucina-17/metabolismo , Lipidômica , Transcriptoma , Camundongos Endogâmicos C57BL , Doxorrubicina/efeitos adversos , Inflamação/metabolismo , Estresse Oxidativo , Miócitos Cardíacos/metabolismo , Apoptose
4.
Sci Rep ; 12(1): 7415, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35523819

RESUMO

Endoplasmic reticulum (ER) stress plays a central role in myocardial ischemia/reperfusion (I/R) injury. Irisin has been reported to have protective properties in ischemia disease. In this study, we aimed at investigating whether irisin could alleviate myocardial I/R injury by ER stress attenuation. The in vitro model of hypoxia/reoxygenation (H/R) was established, which resembles I/R in vivo. Cell viability and apoptosis were estimated. Expressions of cleaved caspase-3, cytochrome c, GRP78, pAMPK, CHOP, and eIF2α were assessed by western blot. Our results revealed that pre-treatment with irisin significantly decreased cytochrome c release from mitochondria and caspase-3 activation caused by H/R. Irsin also reduced apoptosis and increased cell viability. These effects were abolished by AMPK inhibitor compound C pre-treatment. Also, GRP78 and CHOP expressions were up-regulated in the H/R group compared to the control group; however, irisin attenuated their expression. The pAMPK level was significantly decreased compared to the control, and this effect could be partly reversed by metformin pre-treatment. These results suggest that ER stress is associated with cell viability decreasing and cardiomyocytes apoptosis induced by H/R. Irisin could efficiently protect cardiomyocytes from H/R-injury via attenuating ER stress and ER stress-induced apoptosis.


Assuntos
Fibronectinas , Traumatismo por Reperfusão Miocárdica , Traumatismo por Reperfusão , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose , Caspase 3/metabolismo , Citocromos c/metabolismo , Estresse do Retículo Endoplasmático , Fibronectinas/farmacologia , Humanos , Hipóxia/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle
5.
Oxid Med Cell Longev ; 2022: 2588891, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35528516

RESUMO

Myocardial ischemia/reperfusion (MI/R) injury is a life-threatening disease with high morbidity and mortality. Herein, the present study is conducted to explore the regulatory mechanism of GSK3ß in MI/R injury regarding cardiomyocyte apoptosis and oxidative stress. The MI/R injury mouse model and hypoxic reoxygenation (H/R) cell model were established. The expression pattern of GSK3ß, FTO, KLF5, and Myc was determined followed by their relation validation. Next, loss-of-function experiments were implemented to verify the effect of GSK3ß/FTO/KLF5/Myc on cardiomyocyte apoptosis and oxidative stress in the MI/R injury mouse model and H/R cell model. High expression of GSK3ß and low expression of FTO, KLF5, and Myc were observed in the MI/R injury mouse model and H/R cell model. GSK3ß promoted phosphorylation of FTO and KLF5, thus increasing the ubiquitination degradation of FTO and KLF5. A decrease of FTO and KLF5 was able to downregulate Myc expression, resulting in enhanced cardiomyocyte apoptosis and oxidative stress. These data together supported the crucial role that GSK3ß played in facilitating cardiomyocyte apoptosis and oxidative stress so as to accelerate MI/R injury, which highlights a promising therapeutic strategy against MI/R injury.


Assuntos
Traumatismo por Reperfusão Miocárdica , Animais , Apoptose , Modelos Animais de Doenças , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo
6.
Cell Death Discov ; 8(1): 202, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35422485

RESUMO

Recent evidence indicates that exosomes derived from mesenchymal stem cells (MSCs) confer protective effects against myocardial ischemia/reperfusion (I/R) injury. Exosomes are carriers of potentially protective endogenous molecules, including microRNAs (miRNAs/miRs). The current study set out to test the effects of transferring miR-182-5p from MSC-derived exosomes into myocardial cells on myocardial I/R injury. First, an I/R mouse model was developed by left anterior descending coronary artery occlusion, and myocardial cells were exposed to hypoxia/reoxygenation (H/R) for in vitro I/R model establishment. Loss- and gain-of-function experiments of miR-182-5p and GSDMD were conducted to explore the effects of miR-182-5p via MSC-derived exosomes on cell pyroptosis and viability. GSDMD was robustly expressed in I/R-injured myocardial tissues and H/R-exposed myocardial cells. GSDMD upregulation promoted H/R-induced myocardial cell pyroptosis and reduced viability, corresponding to increased lactate dehydrogenase release, reactive oxygen species production, and pyroptosis. A luciferase assay demonstrated GSDMD as a target of miR-182-5p. In addition, exosomal miR-182-5p was found to diminish GSDMD-dependent cell pyroptosis and inflammation induced by H/R. Furthermore, MSC-derived exosomes carrying miR-182-5p improved cardiac function and reduced myocardial infarction, accompanied with reduced inflammation and cell pyroptosis in vivo. Taken together, our findings suggest a cardioprotective effect of exosomal miR-182-5p against myocardial I/R injury, shedding light on an attractive therapeutic strategy.

7.
Mol Med ; 27(1): 90, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34412590

RESUMO

BACKGROUND: It is known that increased gastrin concentration is negatively correlated with cardiovascular mortality, and plasma gastrin levels are increased in patients after myocardial infarction (MI). However, whether gastrin can play a protective role in MI remains unknown. METHODS: Adult C57BL/6 mice were subjected to ligation of the left anterior descending coronary artery (LAD) and subcutaneous infusion of gastrin (120 µg/Kg body weight/day, 100 µL in the pump) for 28 days after MI. Plasma gastrin concentrations were measured through an ELISA detection kit. Mice were analyzed by echocardiography after surgery. CD31 and VEGF expression were quantified using immunofluorescence staining or/and western blot to assess the angiogenesis in peri-infarct myocardium. Capillary-like tube formation and cell migration assays were performed to detect gastrin-induced angiogenesis. RESULTS: We found that gastrin administration significantly ameliorated MI-induced cardiac dysfunction and reduced fibrosis at 28 days in post-MI hearts. Additionally, gastrin treatment significantly decreased cardiomyocyte apoptosis and increased angiogenesis in the infarct border zone without influencing cardiomyocyte proliferation. In vitro results revealed that gastrin up-regulated the PI3K/Akt/vascular endothelial growth factor (VEGF) signaling pathway and promoted migration and tube formation of human coronary artery endothelial cells (HCAECs). Cholecystokinin 2 receptor (CCK2R) mediated the protective effect of gastrin since the CCK2R blocker CI988 attenuated the gastrin-mediated angiogenesis and cardiac function protection. CONCLUSION: Our data revealed that gastrin promoted angiogenesis and improved cardiac function in post-MI mice, highlighting its potential as a therapeutic target candidate.


Assuntos
Gastrinas/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Neovascularização Fisiológica , Animais , Apoptose/efeitos dos fármacos , Biomarcadores , Cardiotônicos/farmacologia , Gerenciamento Clínico , Modelos Animais de Doenças , Suscetibilidade a Doenças , Ecocardiografia , Ecocardiografia Tridimensional , Gastrinas/sangue , Gastrinas/farmacologia , Testes de Função Cardíaca , Imuno-Histoquímica , Masculino , Camundongos , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/etiologia , Neovascularização Fisiológica/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Biomed Pharmacother ; 140: 111779, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34062415

RESUMO

Doxorubicin (DOX) is a widely used antitumor drug that causes severe cardiotoxicity in patients; no effective strategy yet exists to address this problem. We previously reported that 8-formylophiopogonanone B (8-FOB), a natural isoflavone in Ophiopogon japonicas, antagonizes paraquat-induced hepatotoxicity. Here, we explored the mechanisms underlying DOX-induced cardiotoxicity as well as whether 8-FOB can alleviate DOX-induced cardiotoxicity. Acute cardiotoxicity was established by injecting C57BL/6J mice with a single dose of DOX (20 mg/kg, intraperitoneal). To elucidate the mechanisms underlying DOX-induced cardiotoxicity, differentially expressed genes between hearts from DOX-treated and control mice were identified from the Gene Expression Omnibus (GEO) database via GEO2R. Using the Cytoscape software plugin cytoHubba, five hub genes associated with DOX-induced cardiotoxicity were identified: CD68, PTEN, SERPINE1, AIF1, and HMOX1. However, of these, only HMOX1 protein expression levels were significantly increased after DOX treatment. We also confirmed that HMOX1-dependent myocardial inflammation and fibrosis were closely associated with DOX-induced cardiotoxicity. More importantly, 8-FOB protected against DOX-cardiotoxicity by ameliorating cardiac injury and dysfunction, reducing cardiac fibrosis and inflammatory cytokine release, and inhibiting HMOX1 expression. In conclusion, our results suggest that inhibition of HMOX1-dependent myocardial inflammatory insults and fibrosis is essential for 8-FOB to ameliorate DOX-caused cardiotoxicity.


Assuntos
Antineoplásicos , Cardiotônicos/uso terapêutico , Cardiotoxicidade/tratamento farmacológico , Doxorrubicina , Heme Oxigenase-1/antagonistas & inibidores , Isoflavonas/uso terapêutico , Proteínas de Membrana/antagonistas & inibidores , Animais , Cardiotônicos/farmacologia , Cardiotoxicidade/genética , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Citocinas/genética , Fibrose , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Isoflavonas/farmacologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miocárdio/patologia
9.
Cell Death Discov ; 7(1): 50, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723236

RESUMO

The exact mechanism of myocardial hypertrophy has not been completely elucidated. NOD-like receptor protein 3 (NLRP3) and the pyroptotic cascade play a critical role in cardiac hypertrophy and inflammation. The myokine irisin can inhibit NLRP3 activation, although its exact mechanism of action is unknown. In this study, we induced cardiac hypertrophy in a mouse model via aortic constriction (TAC) to further explore the pathological role of NLRP3 inflammasome-mediated pyroptosis and the potential therapeutic effects of irisin. Cardiac hypertrophy significantly increased the percentage of apoptotic cells and upregulated IL-1ß, cleaved caspase-1, and GSDMD-N that lie downstream of the NLRP3 inflammasome. Subsequently, irisin was co-administered to the TAC mice or angiotensin II (Ang-II)-treated cardiomyocytes to observe whether it could attenuate pyroptosis and cardiac hypertrophy. We established a direct association between pyroptosis and cardiac hypertrophy and found that pharmacological or genetic inhibition of NLRP3 attenuated cardiac hypertrophy. Furthermore, ectopic overexpression of NLRP3 abrogated the cardioprotective effects of irisin. To summarize, pyroptosis is a pathological factor in cardiac hypertrophy, and irisin is a promising therapeutic agent that inhibits NLRP3-mediated pyroptosis of cardiomyocytes.

10.
J Cardiovasc Transl Res ; 14(4): 610-618, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32144627

RESUMO

Ischemia reperfusion (I/R)-induced arrhythmia is a serious complication in patients with cardiac infarction. Remodeling of connexin (Cx) 43, manifested as phosphorylation, contributes significantly to arrhythmogenesis. Integrin-linked kinase (ILK) attenuated ventricular remodeling and improved cardiac function in rats after myocardial infarction. We hypothesized that ILK, through Cx43 phosphorylation, would be protective against I/R-induced ventricular arrhythmias. Our study showed that I/R-induced ventricular arrhythmias were attenuated by an ILK agonist LPTP and worsened by the ILK inhibitor Cpd22. I/R disrupted Cx43 distribution, but it was partially normalized in the presence of LPTP. Compared with I/R, the phosphorylation of Akt was increased significantly after pretreatment with LPTP. The increase in phosphorylated Akt was physiologically significant because, in the presence of the Akt inhibitor MK2206, the protective effects of LPTP were blocked. This indicated that ILK activation prevented I/R-induced-ventricular arrhythmia, an effect potentially related to inhibition of Cx43 remodeling via Akt activation.


Assuntos
Antiarrítmicos/farmacologia , Conexina 43/metabolismo , Ativadores de Enzimas/farmacologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Taquicardia Ventricular/prevenção & controle , Fibrilação Ventricular/prevenção & controle , Animais , Modelos Animais de Doenças , Ativação Enzimática , Frequência Cardíaca/efeitos dos fármacos , Preparação de Coração Isolado , Masculino , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Taquicardia Ventricular/enzimologia , Taquicardia Ventricular/patologia , Taquicardia Ventricular/fisiopatologia , Fibrilação Ventricular/enzimologia , Fibrilação Ventricular/patologia , Fibrilação Ventricular/fisiopatologia , Remodelação Ventricular/efeitos dos fármacos
11.
J Appl Toxicol ; 41(5): 775-788, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33205412

RESUMO

Cadmium (Cd) is an occupational and environmental heavy metal pollutant derived from many sources that is linked to endothelial homeostasis. The endothelium is an important site of Cd deposition, while increasing evidence has revealed there is a close relationship between endothelial dysfunction and abnormal lipid metabolism. However, the effects of the alterations in lipid metabolism on endothelial cells (ECs) after Cd exposure still remain unclear. In our study, human microvascular endothelial cells (HMEC-1) were exposed to 40-µM Cd for 6, 12, or 24 h or 10-, 20-, or 40-µM Cd for 24 h, respectively. The Cd exposure accelerated the decomposition of triglyceride (TG) and resulted in the accumulation of free fatty acids (FFAs). These changes stimulated cytotoxicity, impaired fatty acid oxidation (FAO), induced reactive oxygen species (ROS) generation, altered the mitochondrial membrane potential (MMP), and decreased the ATP content, which eventually led to endothelial dysfunction and cell death. In summary, exposure to cadmium caused endothelial dysfunction by disrupting lipid metabolism in HMEC-1. These changes were mainly due to FFA accumulation and FAO inhibition, which further induced ROS generation and mitochondrial dysfunction. Moreover, our results provide novel insight into understanding the alterations of lipid metabolism induced by Cd exposure in ECs.


Assuntos
Cádmio/toxicidade , Células Endoteliais/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Metabolismo dos Lipídeos/efeitos dos fármacos , Animais , Endotélio/metabolismo , Poluentes Ambientais/metabolismo , Humanos , Potencial da Membrana Mitocondrial , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Triglicerídeos/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-33133213

RESUMO

BACKGROUND: Podocyte injury plays an important role in diabetic nephropathy (DN). The aim of this study was to determine the potential therapeutic effects of the ginsenoside Rg1 on hyperlipidemia-stressed podocytes and elucidate the underlying mechanisms. METHODS: In vitro and in vivo models of DN were established as previously described, and the expression levels of relevant markers were analyzed by Western blotting, real-time Polymerase Chain Reaction (PCR), immunofluorescence, and immunohistochemistry. RESULTS: Ginsenoside Rg1 alleviated pyroptosis in podocytes cultured under hyperlipidemic conditions, as well as in the renal tissues of diabetic rats, and downregulated the mammalian target of rapamycin (mTOR)/NF-κB pathway. In addition, Rg1 also inhibited hyperlipidemia-induced NLRP3 inflammasome in the podocytes, which was abrogated by the mTOR activator L-leucine (LEU). The antipyroptotic effects of Rg1 manifested as improved renal function in the DN rats. CONCLUSION: Ginsenoside Rg1 protects podocytes from hyperlipidemia-induced damage by inhibiting pyroptosis through the mTOR/NF-κB/NLRP3 axis, indicating a potential therapeutic function in DN.

13.
Life Sci ; 233: 116631, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31278945

RESUMO

AIMS: Prior to reperfusion, Calpains remain inactive due to the acidic pH and elevated ionic strength in the ischemic myocardium; but Calpain is activated during myocardial reperfusion. The underlying mechanism of Calpain activation in the ischemia-reperfusion (I/R) is yet to be determined. Therefore, the present study aims to investigate the mechanism of Calpain in I/R-induced mice. MAIN METHODS: In order to detect the function of Calpain and the NLRP3/ASC/Caspase-1 axis in cardiomyocyte pyroptosis, endoplasmic reticulum (ER) stress and myocardial function, the cardiomyocytes were treated with hypoxia-reoxygenation (H/R), and NLRP3 were silenced, Calpain was overexpressed and Caspase-1 inhibitors were used to determine cardiomyocyte pyroptosis. The results obtained from the cell experiments were then verified with an animal experiment in I/R mice. KEY FINDINGS: There was an overexpression in Calpain, ASC, NLRP3, GRP78 and C/EBP homologous protein (CHOP) in cardiomyocytes following H/R. A significant increase was witnessed in lactic acid dehydrogenase (LDH) activity, cardiomyocyte pyroptosis rate, Calpain activity, reactive oxygen species (ROS) concentration, as well as activation of ER stress in cardiomyocytes after H/R. However, opposing results were observed in H/R cardiomyocytes that received siRNA Calpain, siRNA NLRP3 or Caspase-1 inhibitor treatment. Overall, the results obtained from the animal experiment were consistent with the results from the cell experiment. SIGNIFICANCE: The silencing of Calpain suppresses the activation of the NLRP3/ASC/Caspase-1 axis, thus inhibiting ER stress in mice and improving myocardial dysfunction induced by I/R, providing a novel therapeutic pathway for I/R.


Assuntos
Sistema y+ de Transporte de Aminoácidos/antagonistas & inibidores , Calpaína/antagonistas & inibidores , Caspase 1/química , Estresse do Retículo Endoplasmático , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Animais , Calpaína/genética , Calpaína/metabolismo , Caspase 1/genética , Caspase 1/metabolismo , Células Cultivadas , Chaperona BiP do Retículo Endoplasmático , Inflamassomos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , RNA Interferente Pequeno/genética
15.
J Am Heart Assoc ; 7(14)2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-30005556

RESUMO

BACKGROUND: Ischemia/reperfusion injury (IRI) is one of the most predominant complications of ischemic heart disease. Gastrin has emerged as a regulator of cardiovascular function, playing a key protective role in hypoxia. Serum gastrin levels are increased in patients with myocardial infarction, but the pathophysiogical significance of this finding is unknown. The purpose of this study was to determine whether and how gastrin protects cardiac myocytes from IRI. METHODS AND RESULTS: Adult male Sprague-Dawley rats were used in the experiments. The hearts in living rats or isolated Langendorff-perfused rat hearts were subjected to ischemia followed by reperfusion to induce myocardial IRI. Gastrin, alone or with an antagonist, was administered before the induction of myocardial IRI. We found that gastrin improved myocardial function and reduced the expression of myocardial injury markers, infarct size, and cardiomyocyte apoptosis induced by IRI. Gastrin increased the phosphorylation levels of ERK1/2 (extracellular signal-regulated kinase 1/2), AKT (protein kinase B), and STAT3 (signal transducer and activator of transcription 3), indicating its ability to activate the RISK (reperfusion injury salvage kinase) and SAFE (survivor activating factor enhancement) pathways. The presence of inhibitors of ERK1/2, AKT, or STAT3 abrogated the gastrin-mediated protection. The protective effect of gastrin was via CCK2R (cholecystokinin 2 receptor) because the CCK2R blocker CI988 prevented the gastrin-mediated protection of the heart with IRI. Moreover, we found a negative correlation between serum levels of cardiac troponin I and gastrin in patients with unstable angina pectoris undergoing percutaneous coronary intervention, suggesting a protective effect of gastrin in human cardiomyocytes. CONCLUSIONS: These results indicate that gastrin can reduce myocardial IRI by activation of the RISK and SAFE pathways.


Assuntos
Gastrinas/farmacologia , Coração/efeitos dos fármacos , Hormônios/farmacologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Idoso , Angina Instável/sangue , Angina Instável/cirurgia , Animais , Apoptose/efeitos dos fármacos , Feminino , Gastrinas/sangue , Humanos , Preparação de Coração Isolado , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Intervenção Coronária Percutânea , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Receptor de Colecistocinina B/antagonistas & inibidores , Receptor de Colecistocinina B/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Troponina I/sangue
16.
Clin Sci (Lond) ; 131(24): 2919-2932, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29162747

RESUMO

After myocardial infarction (MI), the heart is difficult to repair because of great loss of cardiomyoctyes and lack of cardiac regeneration. Novel drug candidates that aim at reducing pathological remodeling and stimulating cardiac regeneration are highly desirable. In the present study, we identified if and how a novel porcupine inhibitor CGX1321 influenced MI and cardiac regeneration. Permanent ligation of left anterior descending (LAD) coronary artery was performed in mice to induce MI injury. Cardiac function was measured by echocardiography, infarct size was examined by TTC staining. Fibrosis was evaluated with Masson's trichrome staining and vimentin staining. As a result, CGX1321 administration blocked the secretion of Wnt proteins, and inhibited both canonical and non-canonical Wnt signaling pathways. CGX1321 improved cardiac function, reduced myocardial infarct size, and fibrosis of post-MI hearts. CGX1321 significantly increased newly formed cardiomyocytes in infarct border zone of post-MI hearts, evidenced by the increased EdU+ cardiomyocytes. Meanwhile, CGX1321 increased Ki67+ and phosphohistone H3 (PH3+) cardiomyocytes in culture, indicating enhanced cardiomyocyte proliferation. The mRNA microarray showed that CGX1321 up-regulated cell cycle regulating genes such as Ccnb1 and Ccne1 CGX1321 did not alter YAP protein phosphorylation and nuclear translocation in cardiomyocytes. In conclusion, porcupine inhibitor CGX1321 reduces MI injury by limiting fibrosis and promoting regeneration. It promotes cardiomyocyte proliferation by stimulating cell cycle regulating genes with a Hippo/YAP-independent pathway.


Assuntos
Aciltransferases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Proteínas de Membrana/antagonistas & inibidores , Infarto do Miocárdio/tratamento farmacológico , Miocárdio/enzimologia , Miócitos Cardíacos/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Aciltransferases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Fibrose , Antígeno Ki-67/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Fosfoproteínas/metabolismo , Fosforilação , Ratos , Fatores de Tempo , Regulação para Cima , Proteínas Wnt/metabolismo , Proteína Wnt-5a/metabolismo , Proteínas de Sinalização YAP
17.
Circulation ; 136(9): 834-848, 2017 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-28642276

RESUMO

BACKGROUND: Adult mammalian hearts have a limited ability to generate new cardiomyocytes. Proliferation of existing adult cardiomyocytes (ACMs) is a potential source of new cardiomyocytes. Understanding the fundamental biology of ACM proliferation could be of great clinical significance for treating myocardial infarction (MI). We aim to understand the process and regulation of ACM proliferation and its role in new cardiomyocyte formation of post-MI mouse hearts. METHODS: ß-Actin-green fluorescent protein transgenic mice and fate-mapping Myh6-MerCreMer-tdTomato/lacZ mice were used to trace the fate of ACMs. In a coculture system with neonatal rat ventricular myocytes, ACM proliferation was documented with clear evidence of cytokinesis observed with time-lapse imaging. Cardiomyocyte proliferation in the adult mouse post-MI heart was detected by cell cycle markers and 5-ethynyl-2-deoxyuridine incorporation analysis. Echocardiography was used to measure cardiac function, and histology was performed to determine infarction size. RESULTS: In vitro, mononucleated and bi/multinucleated ACMs were able to proliferate at a similar rate (7.0%) in the coculture. Dedifferentiation proceeded ACM proliferation, which was followed by redifferentiation. Redifferentiation was essential to endow the daughter cells with cardiomyocyte contractile function. Intercellular propagation of Ca2+ from contracting neonatal rat ventricular myocytes into ACM daughter cells was required to activate the Ca2+-dependent calcineurin-nuclear factor of activated T-cell signaling pathway to induce ACM redifferentiation. The properties of neonatal rat ventricular myocyte Ca2+ transients influenced the rate of ACM redifferentiation. Hypoxia impaired the function of gap junctions by dephosphorylating its component protein connexin 43, the major mediator of intercellular Ca2+ propagation between cardiomyocytes, thereby impairing ACM redifferentiation. In vivo, ACM proliferation was found primarily in the MI border zone. An ischemia-resistant connexin 43 mutant enhanced the redifferentiation of ACM-derived new cardiomyocytes after MI and improved cardiac function. CONCLUSIONS: Mature ACMs can reenter the cell cycle and form new cardiomyocytes through a 3-step process: dedifferentiation, proliferation, and redifferentiation. Intercellular Ca2+ signal from neighboring functioning cardiomyocytes through gap junctions induces the redifferentiation process. This novel mechanism contributes to new cardiomyocyte formation in post-MI hearts in mammals.


Assuntos
Infarto do Miocárdio/patologia , Miócitos Cardíacos/citologia , Animais , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Conexina 43/antagonistas & inibidores , Conexina 43/genética , Conexina 43/metabolismo , Citocinese , Ecocardiografia , Junções Comunicantes/metabolismo , Coração/diagnóstico por imagem , Humanos , Camundongos , Camundongos Transgênicos , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Interferência de RNA , Ratos , Transdução de Sinais , Troponina I/metabolismo
18.
Stem Cell Res Ther ; 8(1): 17, 2017 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-28129786

RESUMO

BACKGROUND: Transplantation of cardiosphere-derived cells (CDCs) has been shown to exert a therapeutic effect in patients with myocardial infarction (MI). However, poor survival of transplanted CDCs limits their beneficial effect. Metformin (MET) activates AMP-activated protein kinase (AMPK) which is associated with cell survival. The aim of this study is to determine whether MET improves CDC survival in the transplantation microenvironment and enhances the therapeutic effect of CDC transplantation against MI. METHODS: CDCs were isolated and expanded from transgenic ß-actin-GFP mice. CDCs were pretreated with MET and intramyocardially injected into wild-type C57 mouse heart with MI injury. The survival of CDCs was quantified, and the infarct size and cardiac function of treated hearts were evaluated. RESULTS: CDC transplantation modestly reduced infarct size and improved cardiac function in the post-MI heart, which was further improved by MET treatment. MET pretreatment significantly increased the survival of CDCs transplanted into the myocardium. MET also reduced CDC apoptosis induced by oxidative stress in vitro. The anti-apoptotic effect of MET was blocked by the AMPK inhibitor compound C. MET increased AMPK phosphorylation and upregulated endothelial nitric oxide synthase (eNOS) in CDCs under oxidative stress, which might be associated with the anti-apoptotic effect of MET. CONCLUSIONS: MET improves the survival of transplanted CDCs in the myocardium, thereby enhancing their therapeutic effect against MI injury. The pro-survival function of MET on CDCs might be associated with an AMPK-eNOS-dependent mechanism.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Infarto do Miocárdio/terapia , Esferoides Celulares/transplante , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Injeções Intralesionais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação/efeitos dos fármacos , Pirazóis/farmacologia , Pirimidinas/farmacologia , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo
19.
PLoS One ; 10(8): e0136443, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26291709

RESUMO

Endoplasmic reticulum (ER) stress induced apoptosis plays a pivotal role in myocardial ischemia/reperfusion (I/R)-injury. Inhibiting ER stress is a major therapeutic target/strategy in treating cardiovascular diseases. Our previous studies revealed that lycopene exhibits great pharmacological potential in protecting against the I/R-injury in vitro and vivo, but whether attenuation of ER stress (and) or ER stress-induced apoptosis contributes to the effects remains unclear. In the present study, using neonatal mouse cardiomyocytes to establish an in vitro model of hypoxia/reoxygenation (H/R) to mimic myocardium I/R in vivo, we aimed to explore the hypothesis that lycopene could alleviate the ER stress and ER stress-induced apoptosis in H/R-injury. We observed that lycopene alleviated the H/R injury as revealed by improving cell viability and reducing apoptosis, suppressed reactive oxygen species (ROS) generation and improved the phosphorylated AMPK expression, attenuated ER stress as evidenced by decreasing the expression of GRP78, ATF6 mRNA, sXbp-1 mRNA, eIF2α mRNA and eIF2α phosphorylation, alleviated ER stress-induced apoptosis as manifested by reducing CHOP/GADD153 expression, the ratio of Bax/Bcl-2, caspase-12 and caspase-3 activity in H/R-treated cardiomyocytes. Thapsigargin (TG) is a potent ER stress inducer and used to elicit ER stress of cardiomyocytes. Our results showed that lycopene was able to prevent TG-induced ER stress as reflected by attenuating the protein expression of GRP78 and CHOP/GADD153 compared to TG group, significantly improve TG-caused a loss of cell viability and decrease apoptosis in TG-treated cardiomyocytes. These results suggest that the protective effects of lycopene on H/R-injury are, at least in part, through alleviating ER stress and ER stress-induced apoptosis in neonatal mouse cardiomyocytes.


Assuntos
Antioxidantes/uso terapêutico , Apoptose/efeitos dos fármacos , Carotenoides/uso terapêutico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Hipóxia/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Traumatismo por Reperfusão/prevenção & controle , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Animais Recém-Nascidos , Western Blotting , Células Cultivadas , Chaperona BiP do Retículo Endoplasmático , Ativação Enzimática/efeitos dos fármacos , Licopeno , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/química , Espécies Reativas de Oxigênio/análise , Reação em Cadeia da Polimerase em Tempo Real
20.
Hypertens Res ; 38(12): 807-12, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26178154

RESUMO

Proliferation of vascular smooth muscle cells (VSMCs) is thought to have a key role in the development of atherosclerotic lesions. Neuropeptide Y (NPY), norepinephrine and dopamine are sympathetic neurotransmitters. NPY has been particularly shown to stimulate proliferation of VSMCs. NPY, norepinephrine and dopamine are all sympathetic transmitters. In our previous study, we found that in the presence of the dopamine receptor, the α1-adrenergic receptor-mediated VSMC proliferation is reduced. We hypothesize that the activation of the D1-like receptor might inhibit the NPY-mediated VSMC proliferation. In our present study, we found that NPY, mainly via the Y1 receptor, increased VSMC proliferation. This was determined by [(3)H]-thymidine incorporation, in a concentration (10(-11) to 10(-8) M)-dependent manner. In the presence of the D1-like receptor agonist, fenoldopam (10(-12) to 10(-5) M), the stimulatory effect of NPY on VSMC proliferation was reduced. The involvement of the D1-like receptor was confirmed when the inhibitory effect of fenoldopam was reversed in the presence of the D1-like receptor antagonist SCH-23390 (10(-8) M). Moreover, the inhibitory effect of fenoldopam on NPY-mediated VSMC proliferation was also blocked in the presence of the PKA inhibitor 14-22 (10(-6) M). Protein kinase A activator 8-(4-chlorophenylthio) adenosine-3,5-cyclic monophosphorothioate, Sp-isomer sodium salt (10(-6) M) could simulate the stimulatory effect of fenoldopam. It indicated that the inhibitory effect of D1-like receptors on NPY-mediated VSMC proliferation may have an important role in the regulation of blood pressure or prevention of atherosclerosis.


Assuntos
Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Neuropeptídeo Y/farmacologia , Receptores de Dopamina D1/fisiologia , Animais , Aterosclerose/etiologia , Proliferação de Células/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Fenoldopam/farmacologia , Masculino , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/fisiologia , Neointima , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...