Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bone ; 58: 136-145, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24513582

RESUMO

Bones consist of a number of cell types including osteoblasts and their precursor cells at various stages of differentiation. To analyze cellular organization within the bone, we generated Col1a1CreER-DsRed transgenic mice that express, in osteoblasts, CreER and DsRed under the control of a mouse 3.2kb Col1a1 promoter. We further crossed Col1a1CreER-DsRed mice with Prx1CreER-GFP mice that express CreER and GFP in osteochondro progenitor cells under the control of a 2.4kb Prx1 promoter. Since the 3.2kb Col1a1 promoter becomes active in osteoblasts at early stages of differentiation, and Prx1CreER-GFP-expressing periosteal cells show endogenous Col1a1 expression, we expected to find a cell population in which both the 2.4kb Prx1 promoter and the 3.2kb Col1a1 promoter are active. However, our histological and flow cytometric analyses demonstrated that these transgenes are expressed in distinct cell populations. In the periosteum of long bones, Col1a1CreER-DsRed is expressed in the innermost layer directly lining the bone surface, while Prx1CreER-GFP-expressing cells are localized immediately outside of the Col1a1CreER-DsRed-expressing osteoblasts. In the calvaria, Prx1CreER-GFP-expressing cells are also localized in the cranial suture mesenchyme. Our experiments further showed that Col1a1CreER-DsRed-expressing cells lack chondrogenic potential, while the Prx1CreER-GFP-expressing cells show both chondrogenic and osteogenic potential. Our results indicate that Col1a1CreER-DsRed-expressing cells are committed osteoblasts, while Prx1CreER-GFP-expressing cells are osteochondro progenitor cells. The Prx1CreER-GFP and Col1a1CreER-DsRed transgenes will offer novel approaches for analyzing lineage commitment and early stages of osteoblast differentiation under physiologic and pathologic conditions.

2.
Adv Exp Med Biol ; 664: 411-7, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20238042

RESUMO

Toward early detection of susceptibility to age-related macular degeneration (AMD), we quantified plasma carboxyethylpyrrole (CEP) oxidative protein modifications and CEP autoantibodies by ELISA in 916 AMD and 488 control donors. Mean CEP adduct and autoantibody levels were elevated in AMD plasma by ∼60 and ∼30%, respectively, and the odds ratio for both CEP markers elevated was ∼3-fold greater in AMD than in control patients. Genotyping was performed for AMD risk polymorphisms associated with age-related maculopathy susceptibility 2 (ARMS2), high-temperature requirement factor A1 (HTRA1), complement factor H (CFH), and complement C3. The AMD risk predicted for those exhibiting elevated CEP markers and risk genotypes was 2- to 3-fold greater than the risk based on genotype alone. AMD donors carrying the ARMS2 and HTRA1 risk alleles were the most likely to exhibit elevated CEP markers. Receiver operating characteristic curves suggest that CEP markers alone can discriminate between AMD and control plasma donors with ∼76% accuracy and in combination with genomic markers, provide up to ∼80% discrimination accuracy. CEP plasma biomarkers, particularly in combination with genomic markers, offer a potential early warning system for predicting susceptibility to this blinding disease.


Assuntos
Degeneração Macular/sangue , Proteômica , Autoanticorpos/sangue , Biomarcadores/sangue , Genótipo , Humanos , Degeneração Macular/genética , Degeneração Macular/imunologia , Pirróis/sangue , Fatores de Risco , Sensibilidade e Especificidade
3.
Mol Cell Proteomics ; 9(6): 1031-46, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20177130

RESUMO

A quantitative proteomics analysis of the macular Bruch membrane/choroid complex was pursued for insights into the molecular mechanisms of age-related macular degeneration (AMD). Protein in trephine samples from the macular region of 10 early/mid-stage dry AMD, six advanced dry AMD, eight wet AMD, and 25 normal control post-mortem eyes was analyzed by LC MS/MS iTRAQ (isobaric tags for relative and absolute quantitation) technology. A total of 901 proteins was quantified, including 556 proteins from > or =3 AMD samples. Most proteins differed little in amount between AMD and control samples and therefore reflect the proteome of normal macular tissues of average age 81. A total of 56 proteins were found to be elevated and 43 were found to be reduced in AMD tissues relative to controls. Analysis by category of disease progression revealed up to 16 proteins elevated or decreased in each category. About 60% of the elevated proteins are involved in immune response and host defense, including many complement proteins and damage-associated molecular pattern proteins such as alpha-defensins 1-3, protein S100s, crystallins, histones, and galectin-3. Four retinoid processing proteins were elevated only in early/mid-stage AMD, supporting a role for retinoids in AMD initiation. Proteins uniquely decreased in early/mid-stage AMD implicate hematologic malfunctions and weakened extracellular matrix integrity and cellular interactions. Galectin-3, a receptor for advanced glycation end products, was the most significantly elevated protein in advanced dry AMD, supporting a role for advanced glycation end products in dry AMD progression. The results endorse inflammatory processes in both early and advanced AMD pathology, implicate different pathways of progression to advanced dry and wet AMD, and provide a new database for hypothesis-driven and discovery-based studies of AMD.


Assuntos
Lâmina Basilar da Corioide/metabolismo , Lâmina Basilar da Corioide/patologia , Proteínas do Olho/metabolismo , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Proteômica/métodos , Idoso , Idoso de 80 Anos ou mais , Western Blotting , Lâmina Basilar da Corioide/citologia , Progressão da Doença , Feminino , Humanos , Degeneração Macular/classificação , Masculino , Proteoma/metabolismo
4.
Mol Cell Proteomics ; 8(8): 1921-33, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19435712

RESUMO

Age-related macular degeneration (AMD) causes severe vision loss in the elderly; early identification of AMD risk could help slow or prevent disease progression. Toward the discovery of AMD biomarkers, we quantified plasma protein N(epsilon)-carboxymethyllysine (CML) and pentosidine from 58 AMD and 32 control donors. CML and pentosidine are advanced glycation end products that are abundant in Bruch membrane, the extracellular matrix separating the retinal pigment epithelium from the blood-bearing choriocapillaris. We measured CML and pentosidine by LC-MS/MS and LC-fluorometry, respectively, and found higher mean levels of CML (approximately 54%) and pentosidine (approximately 64%) in AMD (p < 0.0001) relative to normal controls. Plasma protein fructosyl-lysine, a marker of early glycation, was found by amino acid analysis to be in equal amounts in control and non-diabetic AMD donors, supporting an association between AMD and increased levels of CML and pentosidine independent of other diseases like diabetes. Carboxyethylpyrrole (CEP), an oxidative modification from docosahexaenoate-containing lipids and also abundant in AMD Bruch membrane, was elevated approximately 86% in the AMD cohort, but autoantibody titers to CEP, CML, and pentosidine were not significantly increased. Compellingly higher mean levels of CML and pentosidine were present in AMD plasma protein over a broad age range. Receiver operating curves indicate that CML, CEP adducts, and pentosidine alone discriminated between AMD and control subjects with 78, 79, and 88% accuracy, respectively, whereas CML in combination with pentosidine provided approximately 89% accuracy, and CEP plus pentosidine provided approximately 92% accuracy. Pentosidine levels appeared slightly altered in AMD patients with hypertension and cardiovascular disease, indicating further studies are warranted. Overall this study supports the potential utility of plasma protein CML and pentosidine as biomarkers for assessing AMD risk and susceptibility, particularly in combination with CEP adducts and with concurrent analyses of fructosyl-lysine to detect confounding factors.


Assuntos
Arginina/análogos & derivados , Biomarcadores/sangue , Lisina/análogos & derivados , Degeneração Macular/sangue , Idoso , Idoso de 80 Anos ou mais , Arginina/sangue , Autoanticorpos/sangue , Proteínas Sanguíneas/metabolismo , Estudos de Casos e Controles , Cromatografia Líquida , Feminino , Fluorometria , Humanos , Modelos Logísticos , Lisina/sangue , Degeneração Macular/diagnóstico , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Pirróis/química , Pirróis/imunologia
5.
Mol Cell Proteomics ; 8(6): 1338-49, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19202148

RESUMO

Age-related macular degeneration (AMD) is a progressive disease and major cause of severe visual loss. Toward the discovery of tools for early identification of AMD susceptibility, we evaluated the combined predictive capability of proteomic and genomic AMD biomarkers. We quantified plasma carboxyethylpyrrole (CEP) oxidative protein modifications and CEP autoantibodies by ELISA in 916 AMD and 488 control donors. CEP adducts are uniquely generated from oxidation of docosahexaenoate-containing lipids that are abundant in the retina. Mean CEP adduct and autoantibody levels were found to be elevated in AMD plasma by approximately 60 and approximately 30%, respectively. The odds ratio for both CEP markers elevated was 3-fold greater or more in AMD than in control patients. Genotyping was performed for AMD risk polymorphisms associated with age-related maculopathy susceptibility 2 (ARMS2), high temperature requirement factor A1 (HTRA1), complement factor H, and complement C3, and the risk of AMD was predicted based on genotype alone or in combination with the CEP markers. The AMD risk predicted for those exhibiting elevated CEP markers and risk genotypes was 2-3-fold greater than the risk based on genotype alone. AMD donors carrying the ARMS2 and HTRA1 risk alleles were the most likely to exhibit elevated CEP markers. The results compellingly demonstrate higher mean CEP marker levels in AMD plasma over a broad age range. Receiver operating characteristic curves suggest that CEP markers alone can discriminate between AMD and control plasma donors with approximately 76% accuracy and in combination with genomic markers provide up to approximately 80% discrimination accuracy. Plasma CEP marker levels were altered slightly by several demographic and health factors that warrant further study. We conclude that CEP plasma biomarkers, particularly in combination with genomic markers, offer a potential early warning system for assessing susceptibility to this blinding, multifactorial disease.


Assuntos
Biomarcadores/metabolismo , Suscetibilidade a Doenças , Genoma , Degeneração Macular/metabolismo , Proteoma , Envelhecimento , Autoanticorpos/sangue , Autoanticorpos/metabolismo , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática , Serina Peptidase 1 de Requerimento de Alta Temperatura A , Humanos , Degeneração Macular/genética , Degeneração Macular/imunologia , Polimorfismo Genético , Proteínas/genética , Serina Endopeptidases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...