Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 11(10)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37896953

RESUMO

Developing recombinant proteins as nasal vaccines for inducing systemic and mucosal immunity against respiratory viruses is promising. However, additional adjuvants are required to overcome the low immunogenicity of protein antigens. Here, a self-adjuvanted protein-RNA ribonucleoprotein vaccine was developed and found to be an effective nasal vaccine in mice and the SARS-CoV-2 infection model. The vaccine consisted of spike RBD (as an antigen), nucleoprotein (as an adaptor), and ssRNA (as an adjuvant and RNA scaffold). This combination robustly induced mucosal IgA, neutralizing antibodies and activated multifunctional T-cells, while also providing sterilizing immunity against live virus challenge. In addition, high-resolution scRNA-seq analysis highlighted airway-resident immune cells profile during prime-boost immunization. The vaccine also possesses modularity (antigen/adaptor/RNA scaffold) and can be made to target other viruses. This protein-RNA ribonucleoprotein vaccine is a novel and promising approach for developing safe and potent nasal vaccines to combat respiratory virus infections.

2.
Nat Commun ; 14(1): 6762, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875475

RESUMO

A pan-sarbecovirus or pan-betacoronavirus vaccine that can prevent current and potential future beta-coronavirus infections is important for fighting possible future pandemics. Here, we report a mucosal vaccine that cross-protects small animal models from sarbecoviruses including SARS-CoV-1, SARS-CoV-2 and its variants. The vaccine comprises a live-but-defective SARS-CoV-2 virus that is envelope deficient and has the orf8 segment replaced by interferon-beta, hence named Interferon Beta Integrated SARS-CoV-2 (IBIS) vaccine. Nasal vaccination with IBIS protected mice from lethal homotypic SARS-CoV-2 infection and hamsters from co-housing-mediated transmission of homotypic virus. Moreover, IBIS provided complete protection against heterotypic sarbecoviruses, including SARS-CoV-2 Delta and Omicron variants, and SARS-CoV-1 in both mice and hamsters. Besides inducing a strong lung CD8 + T cell response, IBIS specifically heightened the activation of mucosal virus-specific CD4 + T cells compared to the interferon-null vaccine. The direct production of interferon by IBIS also suppressed virus co-infection of SARS-CoV-2 in human cells, reducing the risk of genetic recombination when using as live vaccines. Altogether, IBIS is a next-generation pan-sarbecovirus vaccine and warrants further clinical investigations.


Assuntos
Interferons , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Cricetinae , Humanos , Animais , Camundongos , Interferon beta , SARS-CoV-2 , Vacinas Atenuadas , Modelos Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus
3.
Emerg Microbes Infect ; 11(1): 964-967, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35275039

RESUMO

SARS-CoV-2 has caused the COVID-19 pandemic since early 2020. As of January 2022, the worldwide spreading of SARS-CoV-2 leads to approximately 0.35 billion of human infections and five millions of deaths. Current vaccination is one of the effective ways to control SARS-CoV-2 transmission and reduce the disease severity. However, the antibody level against the immunogen significantly drops several months after the standard two-dose vaccination, and hence a third or fourth dose booster (the same immunogen) has been suggested to boost the antibody response. Here, we described an ultra-effective nasal vaccine booster that potently induced the extraordinary high-level of neutralizing antibody in pre-vaccinated mice. The vaccine booster is composed of a recombinant receptor binding domain of SARS-CoV-2 spike (either wild-type or omicron) fused with a domain of SARS-CoV-2 nucleoprotein. In the absence of adjuvants, a single intranasal administration of the booster in pre-vaccinated mice significantly induced systemic and mucosal antibody responses as evidenced by the elevation of the cross-variant neutralizing antibody and induction of IgA in bronchoalveolar lavage respectively. Most importantly, the single dose nasal vaccine booster (omicron version) potently enhanced the neutralizing activity against authentic SARS-CoV-2 omicron virus infection. Taken together, the induction of respiratory mucosal immunity and the enhancement of cross-variant neutralizing activity by the nasal vaccine booster warrants further clinical trials in humans.


Assuntos
COVID-19 , Vacinas , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Camundongos , Pandemias , SARS-CoV-2
4.
Nature ; 593(7859): 418-423, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33727703

RESUMO

The COVID-19 pandemic is the third outbreak this century of a zoonotic disease caused by a coronavirus, following the emergence of severe acute respiratory syndrome (SARS) in 20031 and Middle East respiratory syndrome (MERS) in 20122. Treatment options for coronaviruses are limited. Here we show that clofazimine-an anti-leprosy drug with a favourable safety profile3-possesses inhibitory activity against several coronaviruses, and can antagonize the replication of SARS-CoV-2 and MERS-CoV in a range of in vitro systems. We found that this molecule, which has been approved by the US Food and Drug Administration, inhibits cell fusion mediated by the viral spike glycoprotein, as well as activity of the viral helicase. Prophylactic or therapeutic administration of clofazimine in a hamster model of SARS-CoV-2 pathogenesis led to reduced viral loads in the lung and viral shedding in faeces, and also alleviated the inflammation associated with viral infection. Combinations of clofazimine and remdesivir exhibited antiviral synergy in vitro and in vivo, and restricted viral shedding from the upper respiratory tract. Clofazimine, which is orally bioavailable and comparatively cheap to manufacture, is an attractive clinical candidate for the treatment of outpatients and-when combined with remdesivir-in therapy for hospitalized patients with COVID-19, particularly in contexts in which costs are an important factor or specialized medical facilities are limited. Our data provide evidence that clofazimine may have a role in the control of the current pandemic of COVID-19 and-possibly more importantly-in dealing with coronavirus diseases that may emerge in the future.


Assuntos
Antivirais/farmacologia , Clofazimina/farmacologia , Coronavirus/classificação , Coronavirus/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Alanina/análogos & derivados , Alanina/farmacologia , Alanina/uso terapêutico , Animais , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antivirais/farmacocinética , Antivirais/uso terapêutico , Disponibilidade Biológica , Fusão Celular , Linhagem Celular , Clofazimina/farmacocinética , Clofazimina/uso terapêutico , Coronavirus/crescimento & desenvolvimento , Coronavirus/patogenicidade , Cricetinae , DNA Helicases/antagonistas & inibidores , Sinergismo Farmacológico , Feminino , Humanos , Estágios do Ciclo de Vida/efeitos dos fármacos , Masculino , Mesocricetus , Profilaxia Pré-Exposição , SARS-CoV-2/crescimento & desenvolvimento , Especificidade da Espécie , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética
5.
J Med Virol ; 93(4): 2076-2083, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33026649

RESUMO

The novel betacoronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and caused the coronavirus disease 19 (COVID-19) pandemic due to its high transmissibility and early immunosuppression. Previous studies on other betacoronaviruses suggested that betacoronavirus infection is associated with the host autophagy pathway. However, it is unclear whether any components of autophagy or virophagy can be therapeutic targets for COVID-19 treatment. In this report, we examined the antiviral effect of four well-characterized small molecule inhibitors that target the key cellular factors involved in key steps of the autophagy pathway. They include small molecules targeting the ULK1/Atg1 complex involved in the induction stage of autophagy (ULK1 inhibitor SBI0206965), the ATG14/Beclin1/VPS34 complex involved in the nucleation step of autophagy (class III PI3-kinase inhibitor VPS34-IN1), and a widely-used autophagy inhibitor that persistently inhibits class I and temporary inhibits class III PI3-kinase (3-MA) and a clinically approved autophagy inhibitor that suppresses autophagy by inhibiting lysosomal acidification and prevents the formation of autophagolysosome (HCQ). Surprisingly, not all the tested autophagy inhibitors suppressed SARS-CoV-2 infection. We showed that inhibition of class III PI3-kinase involved in the initiation step of both canonical and noncanonical autophagy potently suppressed SARS-CoV-2 at a nano-molar level. In addition, this specific kinase inhibitor VPS34-IN1, and its bioavailable analogue VVPS34-IN1, potently inhibited SARS-CoV-2 infection in ex vivo human lung tissues. Taken together, class III PI3-kinase may be a possible target for COVID-19 therapeutic development.


Assuntos
Antivirais/farmacologia , Autofagia/efeitos dos fármacos , Tratamento Farmacológico da COVID-19 , Classe III de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Pulmão , Inibidores de Proteínas Quinases/farmacologia , Proteínas Adaptadoras de Transporte Vesicular/antagonistas & inibidores , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/antagonistas & inibidores , Proteínas Relacionadas à Autofagia/antagonistas & inibidores , Chlorocebus aethiops , Reposicionamento de Medicamentos , Humanos , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/virologia , Células Vero
6.
Emerg Microbes Infect ; 9(1): 2685-2696, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33205709

RESUMO

The newly emerged betacoronavirus, SARS-CoV-2, causes the COVID-19 pandemic since December 2019 with more than 35 million laboratory confirmed human infections and over one million deaths within nine months. The genome of SARS-CoV-2 continues to evolve during the global transmission with the notable emergence of the spike D614G substitution that enhances infectivity. Some of these viral adaptations may alter not only the infectivity but also viral pathogenesis. Continuous phylogenomic analysis of circulating viral strains and functional investigation of new non-synonymous substitutions may help to understand the evolution of virus, its virulence and transmissibility. Here we describe a loss of an accessory protein orf3b (57 amino acids) in current circulating SARS-CoV-2 strains, contributing around 24% of more than 100,000 complete viral genomes analysed. The loss of 3b is caused by the presence of an early stop codon which is created by an orf3a Q57H substitution. There is an increasing trend in the loss of orf3b which has reached 32% in May 2020. Geographically, loss of 3b is more prevalent in certain countries including Colombia (46%), USA (48%), South Korea (51%), France (66%), Saudi Arabia (72%), Finland (76%) and Egypt (77%). Interestingly, the loss of 3b coincides with the emergence of spike D614G substitution. In addition, we found that truncated orf3b has lost the interferon antagonism compared to the full-length orf3b, suggesting a loss of function by the newly adapted virus. Further investigation of orf3b deletion and spike D614G substitution on virulence and infectivity respectively will provide important insights into SARS-CoV-2 evolution.


Assuntos
Deleção de Genes , SARS-CoV-2/genética , Proteínas Virais/genética , Sequência de Aminoácidos , Células Cultivadas , Humanos , Interferons/antagonistas & inibidores , SARS-CoV-2/patogenicidade , Proteínas Virais/química , Proteínas Virais/imunologia
7.
mBio ; 11(5)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082264

RESUMO

An accurate diagnostic test for early severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is the key weapon to control the coronavirus disease 2019 (COVID-19) pandemic. We previously reported that the SARS-CoV-2 genome contains a unique orf8 accessory gene absent from other human-pathogenic coronaviruses. Here, we characterized the SARS-CoV-2 orf8 as a novel immunogenic secreted protein and utilized it for the accurate diagnosis of COVID-19. Extracellular orf8 protein was detected in cell culture supernatant and in sera of COVID-19 patients. In addition, orf8 was found highly immunogenic in COVID-19 patients, who showed early seropositivity for anti-orf8 IgM, IgG, and IgA. We hypothesize that orf8 secretion during SARS-CoV-2 infection facilitates early mounting of B cell response. The serological test detecting anti-orf8 IgG antibody can be used for the early and accurate diagnosis of COVID-19.IMPORTANCE Current commercially available serological tests for COVID-19 patients are detecting antibodies against SARS-CoV-2 nucleoprotein and spike glycoprotein. The antinucleoprotein and antispike antibodies can be accurately detected in patients during the mid or late stage of infection, and therefore, these assays have not been widely used for early diagnosis of COVID-19. In this study, we characterized the secretory property of a SARS-CoV-2 orf8 protein and proposed that orf8 secretion during infection facilitates early mounting of the B cell response. We demonstrated the presence of anti-orf8 antibodies in both symptomatic and asymptomatic patients during the early stage of infection, while the anti-N antibody is not detected. Our serological test detecting anti-orf8 antibodies may facilitate the development of early and accurate diagnosis for COVID-19.


Assuntos
Antígenos Virais/imunologia , Betacoronavirus/imunologia , Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , Proteínas Virais/imunologia , Anticorpos Antivirais/sangue , Antígenos Virais/sangue , Antígenos Virais/metabolismo , COVID-19 , Linhagem Celular , Infecções por Coronavirus/sangue , Diagnóstico Precoce , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoglobulina G/sangue , Pandemias , Pneumonia Viral/sangue , SARS-CoV-2 , Proteínas Virais/sangue , Proteínas Virais/metabolismo
8.
Res Sq ; 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33052331

RESUMO

COVID-19 pandemic is the third zoonotic coronavirus (CoV) outbreak of the century after severe acute respiratory syndrome (SARS) in 2003 and Middle East respiratory syndrome (MERS) since 2012. Treatment options for CoVs are largely lacking. Here, we show that clofazimine, an anti-leprosy drug with a favorable safety and pharmacokinetics profile, possesses pan-coronaviral inhibitory activity, and can antagonize SARS-CoV-2 replication in multiple in vitro systems, including the human embryonic stem cell-derived cardiomyocytes and ex vivo lung cultures. The FDA-approved molecule was found to inhibit multiple steps of viral replication, suggesting multiple underlying antiviral mechanisms. In a hamster model of SARS-CoV-2 pathogenesis, prophylactic or therapeutic administration of clofazimine significantly reduced viral load in the lung and fecal viral shedding, and also prevented cytokine storm associated with viral infection. Additionally, clofazimine exhibited synergy when administered with remdesivir. Since clofazimine is orally bioavailable and has a comparatively low manufacturing cost, it is an attractive clinical candidate for outpatient treatment and remdesivir-based combinatorial therapy for hospitalized COVID-19 patients, particularly in developing countries. Taken together, our data provide evidence that clofazimine may have a role in the control of the current pandemic SARS-CoV-2, endemic MERS-CoV in the Middle East, and, possibly most importantly, emerging CoVs of the future.

9.
Emerg Microbes Infect ; 9(1): 1418-1428, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32529952

RESUMO

The Coronavirus disease 2019 (COVID-19), which is caused by the novel SARS-CoV-2 virus, is now causing a tremendous global health concern. Since its first appearance in December 2019, the outbreak has already caused over 5.8 million infections worldwide (till 29 May 2020), with more than 0.35 million deaths. Early virus-mediated immune suppression is believed to be one of the unique characteristics of SARS-CoV-2 infection and contributes at least partially to the viral pathogenesis. In this study, we identified the key viral interferon antagonists of SARS-CoV-2 and compared them with two well-characterized SARS-CoV interferon antagonists, PLpro and orf6. Here we demonstrated that the SARS-CoV-2 nsp13, nsp14, nsp15 and orf6, but not the unique orf8, could potently suppress primary interferon production and interferon signalling. Although SARS-CoV PLpro has been well-characterized for its potent interferon-antagonizing, deubiquitinase and protease activities, SARS-CoV-2 PLpro, despite sharing high amino acid sequence similarity with SARS-CoV, loses both interferon-antagonising and deubiquitinase activities. Among the 27 viral proteins, SARS-CoV-2 orf6 demonstrated the strongest suppression on both primary interferon production and interferon signalling. Orf6-deleted SARS-CoV-2 may be considered for the development of intranasal live-but-attenuated vaccine against COVID-19.


Assuntos
Betacoronavirus/metabolismo , Infecções por Coronavirus/metabolismo , Endorribonucleases/metabolismo , Exorribonucleases/metabolismo , Interferons/antagonistas & inibidores , Interferons/metabolismo , Metiltransferases/metabolismo , Pneumonia Viral/metabolismo , RNA Helicases/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/metabolismo , Betacoronavirus/genética , COVID-19 , Linhagem Celular , Infecções por Coronavirus/genética , Infecções por Coronavirus/virologia , Endorribonucleases/genética , Exorribonucleases/genética , Interações Hospedeiro-Patógeno , Humanos , Interferons/genética , Metiltransferases/genética , Pandemias , Pneumonia Viral/genética , Pneumonia Viral/virologia , RNA Helicases/genética , SARS-CoV-2 , Proteínas não Estruturais Virais/genética , Proteínas Virais/genética
10.
Emerg Microbes Infect ; 8(1): 662-674, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31084471

RESUMO

Influenza defective interfering (DI) particles are replication-incompetent viruses carrying large internal deletion in the genome. The loss of essential genetic information causes abortive viral replication, which can be rescued by co-infection with a helper virus that possesses an intact genome. Despite reports of DI particles present in seasonal influenza A H1N1 infections, their existence in human infections by the avian influenza A viruses, such as H7N9, has not been studied. Here we report the ubiquitous presence of DI-RNAs in nasopharyngeal aspirates of H7N9-infected patients. Single Molecule Real Time (SMRT) sequencing was first applied and long-read sequencing analysis showed that a variety of H7N9 DI-RNA species were present in the patient samples and human bronchial epithelial cells. In several abundantly expressed DI-RNA species, long overlapping sequences have been identified around at the breakpoint region and the other side of deleted region. Influenza DI-RNA is known as a defective viral RNA with single large internal deletion. Beneficial to the long-read property of SMRT sequencing, double and triple internal deletions were identified in half of the DI-RNA species. In addition, we examined the expression of DI-RNAs in mice infected with sublethal dose of H7N9 virus at different time points. Interestingly, DI-RNAs were abundantly expressed as early as day 2 post-infection. Taken together, we reveal the diversity and characteristics of DI-RNAs found in H7N9-infected patients, cells and animals. Further investigations on this overwhelming generation of DI-RNA may provide important insights into the understanding of H7N9 viral replication and pathogenesis.


Assuntos
Vírus Defeituosos/genética , Subtipo H7N9 do Vírus da Influenza A/crescimento & desenvolvimento , Influenza Humana/patologia , Influenza Humana/virologia , RNA Viral/genética , Análise de Sequência de DNA , Animais , Brônquios/virologia , Vírus Defeituosos/isolamento & purificação , Modelos Animais de Doenças , Células Epiteliais/virologia , Genoma Viral , Humanos , Camundongos , Nasofaringe/patologia , Nasofaringe/virologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , RNA Viral/isolamento & purificação , Deleção de Sequência
11.
FASEB J ; 32(8): 4380-4393, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29513570

RESUMO

PACT is a double-stranded RNA-binding protein that has been implicated in host-influenza A virus (IAV) interaction. PACT facilitates the action of RIG-I in the activation of the type I IFN response, which is suppressed by the viral nonstructural protein NS1. PACT is also known to interact with the IAV RNA polymerase subunit PA. Exactly how PACT exerts its antiviral activity during IAV infection remains to be elucidated. In the current study, we demonstrated the interplay between PACT and IAV polymerase. Induction of IFN-ß by the IAV RNP complex was most robust when both RIG-I and PACT were expressed. PACT-dependent activation of IFN-ß production was suppressed by the IAV polymerase subunits, polymerase acidic protein, polymerase basic protein 1 (PB1), and PB2. PACT associated with PA, PB1, and PB2. Compromising PACT in IAV-infected A549 cells resulted in the augmentation of viral RNA (vRNA) transcription and replication and IFN-ß production. Furthermore, vRNA replication was boosted by knockdown of PACT in both A549 cells and IFN-deficient Vero cells. Thus, the antiviral activity of PACT is mediated primarily via its interaction with and inhibition of IAV polymerase. Taken together, our findings reveal a new facet of the host-IAV interaction in which the interplay between PACT and IAV polymerase affects the outcome of viral infection and antiviral response.-Chan, C.-P., Yuen, C.-K., Cheung, P.-H. H., Fung, S.-Y., Lui, P.-Y., Chen, H., Kok, K.-H., Jin, D.-Y. Antiviral activity of double-stranded RNA-binding protein PACT against influenza A virus mediated via suppression of viral RNA polymerase.


Assuntos
Antivirais/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Vírus da Influenza A/metabolismo , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Células A549 , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Células HeLa , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Interferon beta/metabolismo , Proteínas/metabolismo , Células Vero , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética
12.
J Virol ; 90(8): 3902-3912, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26819312

RESUMO

UNLABELLED: Infection with human T-cell leukemia virus type 1 (HTLV-1) is associated with adult T-cell leukemia (ATL) and tropical spastic paraparesis. Type I interferons (IFNs) are key effectors of the innate antiviral response, and IFN-α combined with the nucleoside reverse transcriptase inhibitor zidovudine is considered the standard first-line therapy for ATL. HTLV-1 oncoprotein Tax is known to suppress innate IFN production and response but the underlying mechanisms remain to be fully established. In this study, we report on the suppression of type I IFN production by HTLV-1 Tax through interaction with and inhibition of TBK1 kinase that phosphorylates IRF3. Induced transcription of IFN-ß was severely impaired in HTLV-1-transformed ATL cells and freshly infected T lymphocytes. The ability to suppress IRF3 activation was ascribed to Tax. The expression of Tax alone sufficiently repressed the induction of IFN production by RIG-I plus PACT, cGAMP synthase plus STING, TBK1, IKKε, IRF3, and IRF7, but not by IRF3-5D, a dominant-active phosphomimetic mutant. This suggests that Tax perturbs IFN production at the step of IRF3 phosphorylation. Tax mutants deficient for CREB or NF-κB activation were fully competent in the suppression of IFN production. Coimmunoprecipitation experiments confirmed the association of Tax with TBK1, IKKε, STING, and IRF3.In vitrokinase assay indicated an inhibitory effect of Tax on TBK1-mediated phosphorylation of IRF3. Taken together, our findings suggested a new mechanism by which HTLV-1 oncoprotein Tax circumvents the production of type I IFNs in infected cells. Our findings have implications in therapeutic intervention of ATL. IMPORTANCE: Human T-cell leukemia virus type 1 (HTLV-1) is the cause of adult T-cell leukemia (ATL), an aggressive and fatal blood cancer, as well as another chronic disabling disease of the spinal cord. Treatments are unsatisfactory, and options are limited. A combination of antiviral cellular protein alpha interferon and zidovudine, which is an inhibitor of a viral enzyme called reverse transcriptase, has been recommended as the standard first-line therapy for ATL. Exactly how HTLV-1 interacts with the cellular machinery for interferon production and action is not well understood. Our work sheds light on the mechanism of action for the inhibition of interferon production by an HTLV-1 oncogenic protein called Tax. Our findings might help to improve interferon-based anti-HTLV-1 and anti-ATL therapy.


Assuntos
Produtos do Gene tax/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Fator Regulador 3 de Interferon/antagonistas & inibidores , Interferon beta/antagonistas & inibidores , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Produtos do Gene tax/genética , Células HEK293 , Humanos , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/biossíntese , Células Jurkat , Leucemia-Linfoma de Células T do Adulto/virologia , NF-kappa B/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Linfócitos T/metabolismo , Linfócitos T/virologia
13.
Proc Natl Acad Sci U S A ; 110(13): 5103-8, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23479617

RESUMO

Contagious cancers that pass between individuals as an infectious cell line are highly unusual pathogens. Devil facial tumor disease (DFTD) is one such contagious cancer that emerged 16 y ago and is driving the Tasmanian devil to extinction. As both a pathogen and an allograft, DFTD cells should be rejected by the host-immune response, yet DFTD causes 100% mortality among infected devils with no apparent rejection of tumor cells. Why DFTD cells are not rejected has been a question of considerable confusion. Here, we show that DFTD cells do not express cell surface MHC molecules in vitro or in vivo, due to down-regulation of genes essential to the antigen-processing pathway, such as ß2-microglobulin and transporters associated with antigen processing. Loss of gene expression is not due to structural mutations, but to regulatory changes including epigenetic deacetylation of histones. Consequently, MHC class I molecules can be restored to the surface of DFTD cells in vitro by using recombinant devil IFN-γ, which is associated with up-regulation of the MHC class II transactivator, a key transcription factor with deacetylase activity. Further, expression of MHC class I molecules by DFTD cells can occur in vivo during lymphocyte infiltration. These results explain why T cells do not target DFTD cells. We propose that MHC-positive or epigenetically modified DFTD cells may provide a vaccine to DFTD. In addition, we suggest that down-regulation of MHC molecules using regulatory mechanisms allows evolvability of transmissible cancers and could affect the evolutionary trajectory of DFTD.


Assuntos
Espécies em Perigo de Extinção , Epigênese Genética/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Antígenos de Histocompatibilidade/imunologia , Marsupiais/imunologia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/veterinária , Evasão Tumoral , Animais , Apresentação de Antígeno/imunologia , Linhagem Celular Tumoral , Interferon gama/imunologia , Neoplasias Cutâneas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...