Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Chem ; 15(11): 1503-1508, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37640849

RESUMO

Conical intersections are ubiquitous in chemistry and physics, often governing processes such as light harvesting, vision, photocatalysis and chemical reactivity. They act as funnels between electronic states of molecules, allowing rapid and efficient relaxation during chemical dynamics. In addition, when a reaction path encircles a conical intersection, the molecular wavefunction experiences a geometric phase, which can affect the outcome of the reaction through quantum-mechanical interference. Past experiments have measured indirect signatures of geometric phases in scattering patterns and spectroscopic observables, but there has been no direct observation of the underlying wavepacket interference. Here we experimentally observe geometric-phase interference in the dynamics of a wavepacket travelling around an engineered conical intersection in a programmable trapped-ion quantum simulator. To achieve this, we develop a technique to reconstruct the two-dimensional wavepacket densities of a trapped ion. Experiments agree with the theoretical model, demonstrating the ability of analogue quantum simulators-such as those realized using trapped ions-to accurately describe nuclear quantum effects.

2.
J Chem Phys ; 158(23)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37318163

RESUMO

Polariton chemistry has emerged as an appealing branch of synthetic chemistry that promises mode selectivity and a cleaner approach to kinetic control. Of particular interest are the numerous experiments in which reactivity has been modified by virtue of performing the reaction inside infrared optical microcavities in the absence of optical pumping; this effort is known as "vibropolaritonic chemistry." The optimal conditions for these observations are (1) resonance between cavity and reactive modes at normal incidence (k = 0) and (2) a monotonic increase of the effect with the concentration of emitters in the sample. Importantly, vibropolaritonic chemistry has only been experimentally demonstrated in the so-called "collective" strong coupling regime, where there is a macroscopic number of molecules (rather than a single molecule) coupled to each photon mode of the microcavity. Strikingly, efforts to understand this phenomenon from a conceptual standpoint have encountered several roadblocks, and no single, unifying theory has surfaced thus far. This Perspective documents the most relevant approaches taken by theorists, laying out the contributions and unresolved challenges from each work. We expect this Perspective to not only serve as a primer for experimentalists and theorists alike but also inform future endeavors in the quest for the ultimate formalism of vibropolaritonic chemical kinetics.

3.
Phys Rev Lett ; 122(17): 173902, 2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31107068

RESUMO

In this Letter, we exploit the extended coherence length of mixed plasmon-exciton states to generate active metasurfaces. For this purpose, periodic stripes of organic dye are deposited on a continuous silver film. Typical metasurface effects, such as effective behavior and geometry sensitivity, are measured for periods exceeding the polaritonic wavelength by more than one order of magnitude. By adjusting the metasurface geometry, anisotropy, modified band structure, and unidimensional polaritons are computationally simulated and experimentally observed in reflectometry as well as in emission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...