Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900938

RESUMO

Obesity is associated with increased incidence and metastasis of triple-negative breast cancer (TNBC), an aggressive breast cancer subtype. The extracellular matrix (ECM) is a major component of the tumor microenvironment that drives metastasis. To characterize the temporal effects of age and high-fat diet-driven weight gain on the ECM, we injected allograft tumor cells at 4-week intervals into mammary fat pads of mice fed a control or high-fat diet (HFD), assessing tumor growth and metastasis and evaluating the ECM composition of the mammary fat pads, lungs, and livers. Tumor growth was increased in obese mice after 12 weeks on the HFD. Liver metastasis increased in obese mice only at 4 weeks, and elevated body weight correlated with increased metastasis to the lungs but not the liver. Whole decellularized ECM coupled with proteomics indicated that early stages of obesity were sufficient to induce changes in the ECM composition. Obesity led to increased abundance of the pro-invasive ECM proteins collagen IV and collagen VI in the mammary glands and enhanced the invasive capacity of cancer cells. Cells of stromal vascular fraction and adipose stem and progenitor cells were primarily responsible for secreting collagen IV and VI, not adipocytes. Longer exposure to HFD increased the invasive potential of ECM isolated from lung and liver, with significant changes in ECM composition found in the liver with short-term HFD exposure. Together, this data suggests that changes in the breast, lung, and liver ECM underlie some of the effects of obesity on TNBC incidence and metastasis.

2.
Cancer Res ; 84(7): 958-960, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558132

RESUMO

The extracellular matrix (ECM) has always been studied in the context of the structural support it provides tissues. However, more recently, it has become clear that ECM proteins do more to regulate biological processes relevant to cancer progression: from activating complex signaling pathways to presenting soluble growth factors. In 2009, Ulrich and colleagues provided evidence that the physical properties of the ECM could also contribute to glioblastoma tumor cell proliferation and invasion using tunable hydrogels, emphasizing a role for tumor rigidity in central nervous system cancer progression. Here, we will discuss the results of this landmark article, as well as highlight other work that has shown the importance of tissue stiffness in glioblastoma and other tumor types in the tumor microenvironment. Finally, we will discuss how this research has led to the development of novel treatments for cancer that target tumor rigidity. See related article by Ulrich and colleagues, Cancer Res 2009;69:4167-74.


Assuntos
Glioblastoma , Humanos , Glioblastoma/patologia , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proliferação de Células , Hidrogéis/química , Microambiente Tumoral
3.
Breast Cancer Res ; 26(1): 43, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468326

RESUMO

BACKGROUND: Metastasis is the leading cause of death in breast cancer patients. For metastasis to occur, tumor cells must invade locally, intravasate, and colonize distant tissues and organs, all steps that require tumor cell migration. The majority of studies on invasion and metastasis rely on human breast cancer cell lines. While it is known that these cells have different properties and abilities for growth and metastasis, the in vitro morphological, proliferative, migratory, and invasive behavior of these cell lines and their correlation to in vivo behavior is poorly understood. Thus, we sought to classify each cell line as poorly or highly metastatic by characterizing tumor growth and metastasis in a murine model of six commonly used human triple-negative breast cancer xenografts, as well as determine which in vitro assays commonly used to study cell motility best predict in vivo metastasis. METHODS: We evaluated the liver and lung metastasis of human TNBC cell lines MDA-MB-231, MDA-MB-468, BT549, Hs578T, BT20, and SUM159 in immunocompromised mice. We characterized each cell line's cell morphology, proliferation, and motility in 2D and 3D to determine the variation in these parameters between cell lines. RESULTS: We identified MDA-MB-231, MDA-MB-468, and BT549 cells as highly tumorigenic and metastatic, Hs578T as poorly tumorigenic and metastatic, BT20 as intermediate tumorigenic with poor metastasis to the lungs but highly metastatic to the livers, and SUM159 as intermediate tumorigenic but poorly metastatic to the lungs and livers. We showed that metrics that characterize cell morphology are the most predictive of tumor growth and metastatic potential to the lungs and liver. Further, we found that no single in vitro motility assay in 2D or 3D significantly correlated with metastasis in vivo. CONCLUSIONS: Our results provide an important resource for the TNBC research community, identifying the metastatic potential of 6 commonly used cell lines. Our findings also support the use of cell morphological analysis to investigate the metastatic potential and emphasize the need for multiple in vitro motility metrics using multiple cell lines to represent the heterogeneity of metastasis in vivo.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Xenoenxertos , Transplante Heterólogo , Movimento Celular
4.
bioRxiv ; 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37398306

RESUMO

Background: Metastasis is the leading cause of death in breast cancer patients. For metastasis to occur, tumor cells must invade locally, intravasate, and colonize distant tissues and organs, all steps that require tumor cell migration. The majority of studies on invasion and metastasis rely on human breast cancer cell lines. While it is known that these cells have different properties and abilities for growth and metastasis, the in vitro morphological, proliferative, migratory, and invasive behavior of these cell lines and their correlation to in vivo behavior is poorly understood. Thus, we sought to classify each cell line as poorly or highly metastatic by characterizing tumor growth and metastasis in a murine model of six commonly used human triple-negative breast cancer xenografts, as well as determine which in vitro assays commonly used to study cell motility best predict in vivo metastasis. Methods: We evaluated the liver and lung metastasis of human TNBC cell lines MDA-MB-231, MDA-MB-468, BT549, Hs578T, BT20, and SUM159 in immunocompromised mice. We characterized each cell line's cell morphology, proliferation, and motility in 2D and 3D to determine the variation in these parameters between cell lines. Results: We identified MDA-MB-231, MDA-MB-468, and BT549 cells as highly tumorigenic and metastatic, Hs578T as poorly tumorigenic and metastatic, BT20 as intermediate tumorigenic with poor metastasis to the lungs but highly metastatic to the livers, and SUM159 as intermediate tumorigenic but poorly metastatic to the lungs and livers. We showed that metrics that characterize cell morphology are the most predictive of tumor growth and metastatic potential to the lungs and liver. Further, we found that no single in vitro motility assay in 2D or 3D significantly correlated with metastasis in vivo. Conclusions: Our results provide an important resource for the TNBC research community, identifying the metastatic potential of 6 commonly used cell lines. Our findings also support the use of cell morphological analysis to investigate the metastatic potential and emphasize the need for multiple in vitro motility metrics using multiple cell lines to represent the heterogeneity of metastasis in vivo.

5.
Sci Rep ; 13(1): 6493, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081068

RESUMO

LI-cadherin is a member of the cadherin superfamily. LI-cadherin mediates Ca2+-dependent cell-cell adhesion through homodimerization. A previous study reported two single nucleotide polymorphisms (SNPs) in the LI-cadherin-coding gene (CDH17). These SNPs correspond to the amino acid changes of Lys115 to Glu and Glu739 to Ala. Patients with colorectal cancer carrying these SNPs are reported to have a higher risk of lymph node metastasis than patients without the SNPs. Although proteins associated with metastasis have been identified, the molecular mechanisms underlying the functions of these proteins remain unclear, making it difficult to develop effective strategies to prevent metastasis. In this study, we employed biochemical assays and molecular dynamics (MD) simulations to elucidate the molecular mechanisms by which the amino acid changes caused by the SNPs in the LI-cadherin-coding gene increase the risk of metastasis. Cell aggregation assays showed that the amino acid changes weakened the LI-cadherin-dependent cell-cell adhesion. In vitro assays demonstrated a decrease in homodimerization tendency and MD simulations suggested an alteration in the intramolecular hydrogen bond network by the mutation of Lys115. Taken together, our results indicate that the increased risk of lymph node metastasis is due to weakened cell-cell adhesion caused by the decrease in homodimerization tendency.


Assuntos
Neoplasias Colorretais , Polimorfismo de Nucleotídeo Único , Humanos , Caderinas/genética , Caderinas/metabolismo , Adesão Celular/genética , Neoplasias Colorretais/patologia , Metástase Linfática/genética
6.
J Biol Chem ; 297(3): 101054, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34364873

RESUMO

Liver intestine (LI)-cadherin is a member of the cadherin superfamily, which encompasses a group of Ca2+-dependent cell-adhesion proteins. The expression of LI-cadherin is observed on various types of cells in the human body, such as normal small intestine and colon cells, and gastric cancer cells. Because its expression is not observed on normal gastric cells, LI-cadherin is a promising target for gastric cancer imaging. However, because the cell adhesion mechanism of LI-cadherin has remained unknown, rational design of therapeutic molecules targeting this cadherin has been hampered. Here, we have studied the homodimerization mechanism of LI-cadherin. We report the crystal structure of the LI-cadherin homodimer containing its first four extracellular cadherin repeats (EC1-4). The EC1-4 homodimer exhibited a unique architecture different from that of other cadherins reported so far, driven by the interactions between EC2 of one protein chain and EC4 of the second protein chain. The crystal structure also revealed that LI-cadherin possesses a noncanonical calcium ion-free linker between the EC2 and EC3 domains. Various biochemical techniques and molecular dynamics simulations were employed to elucidate the mechanism of homodimerization. We also showed that the formation of the homodimer observed in the crystal structure is necessary for LI-cadherin-dependent cell adhesion by performing cell aggregation assays. Taken together, our data provide structural insights necessary to advance the use of LI-cadherin as a target for imaging gastric cancer.


Assuntos
Caderinas/química , Caderinas/metabolismo , Caderinas/genética , Adesão Celular , Agregação Celular , Cristalografia por Raios X , Dimerização , Humanos , Domínios Proteicos , Estrutura Terciária de Proteína
7.
Artigo em Inglês | MEDLINE | ID: mdl-29474162

RESUMO

Cadherin-17 (CDH17) is highly expressed in gastric cancer and is thus considered to be a good target for antibody therapy. CDH17 is classified as a nonclassical cadherin, in that it is composed of seven extracellular cadherin domains. We generated anti-CDH17 monoclonal antibodies (mAbs) which recognize the extracellular domain of CDH17. Competitive assay using AGS, a gastric cancer cell line, cells revealed that five selected anti-CDH17 mAbs recognize different epitopes on CDH17. As AGS cells were shown to exhibit broad expression pattern of CDH17 by flow cytometry, we separated three clones with a low (10,000/cell), medium (50,000/cell), and high (200,000/cell) expression level, designating them as AGSlow, AGSmed, and AGShigh, respectively. The mAbs, coupled with saporin, exhibited effective cytotoxicity to AGShigh, but poor cytotoxicity to AGSlow. By contrast, the immunotoxin cocktail using the three clones D2101, D2005, and D2008, which recognize different epitopes, exhibited efficient cytotoxicity, even to the AGSlow group. The effect of the immunotoxin cocktail is synergistic, as the combination index was demonstrated to be below 1.0, as calculated by the method of Chou and Talalay using CalcuSyn software. These results suggest that the immunotoxin cocktail targeted to multiple epitopes has synergistic effects on low expression level cells, which expand the applicable range of immunotoxin therapy for cancer.


Assuntos
Anticorpos Monoclonais/farmacologia , Apoptose/efeitos dos fármacos , Caderinas/imunologia , Sinergismo Farmacológico , Epitopos/imunologia , Imunotoxinas/farmacologia , Neoplasias Gástricas/patologia , Biomarcadores Tumorais/metabolismo , Caderinas/antagonistas & inibidores , Caderinas/metabolismo , Humanos , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/metabolismo , Células Tumorais Cultivadas
8.
J Biochem ; 162(4): 255-258, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28981752

RESUMO

Artificial affinity maturation of antibodies is promising but often shows difficulties because the roles of each amino acid residue are not well known. To elucidate their roles in affinity against the antigen and thermal stability, interface residues in single-chain Fv of an antibody B2212A with its antigen roundabout homolog 1 were mutated and analyzed. Some amino acids played important roles in the affinity while others contributed to thermal stability.


Assuntos
Aminoácidos/química , Anticorpos/química , Anticorpos/imunologia , Antígenos/química , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/imunologia , Receptores Imunológicos/química , Receptores Imunológicos/imunologia , Termodinâmica , Aminoácidos/imunologia , Antígenos/imunologia , Proteínas Roundabout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...