Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 151(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38682276

RESUMO

The GPR124/RECK/WNT7 pathway is an essential regulator of CNS angiogenesis and blood-brain barrier (BBB) function. GPR124, a brain endothelial adhesion seven-pass transmembrane protein, associates with RECK, which binds and stabilizes newly synthesized WNT7 that is transferred to frizzled (FZD) to initiate canonical ß-catenin signaling. GPR124 remains enigmatic: although its extracellular domain (ECD) is essential, the poorly conserved intracellular domain (ICD) appears to be variably required in mammals versus zebrafish, potentially via adaptor protein bridging of GPR124 and FZD ICDs. GPR124 ICD deletion impairs zebrafish angiogenesis, but paradoxically retains WNT7 signaling upon mammalian transfection. We thus investigated GPR124 ICD function using the mouse deletion mutant Gpr124ΔC. Despite inefficiently expressed GPR124ΔC protein, Gpr124ΔC/ΔC mice could be born with normal cerebral cortex angiogenesis, in comparison with Gpr124-/- embryonic lethality, forebrain avascularity and hemorrhage. Gpr124ΔC/ΔC vascular phenotypes were restricted to sporadic ganglionic eminence angiogenic defects, attributable to impaired GPR124ΔC protein expression. Furthermore, Gpr124ΔC and the recombinant GPR124 ECD rescued WNT7 signaling in culture upon brain endothelial Gpr124 knockdown. Thus, in mice, GPR124-regulated CNS forebrain angiogenesis and BBB function are exerted by ICD-independent functionality, extending the signaling mechanisms used by adhesion seven-pass transmembrane receptors.


Assuntos
Barreira Hematoencefálica , Encéfalo , Neovascularização Fisiológica , Receptores Acoplados a Proteínas G , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/embriologia , Neovascularização Fisiológica/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Camundongos , Encéfalo/metabolismo , Encéfalo/embriologia , Domínios Proteicos , Camundongos Knockout , Transdução de Sinais , Proteínas Wnt/metabolismo , Proteínas Wnt/genética , Humanos , Células Endoteliais/metabolismo , Angiogênese , Proteínas Ligadas por GPI
2.
Cell Rep ; 42(11): 113355, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37922313

RESUMO

Somatic copy number gains are pervasive across cancer types, yet their roles in oncogenesis are insufficiently evaluated. This inadequacy is partly due to copy gains spanning large chromosomal regions, obscuring causal loci. Here, we employed organoid modeling to evaluate candidate oncogenic loci identified via integrative computational analysis of extreme copy gains overlapping with extreme expression dysregulation in The Cancer Genome Atlas. Subsets of "outlier" candidates were contextually screened as tissue-specific cDNA lentiviral libraries within cognate esophagus, oral cavity, colon, stomach, pancreas, and lung organoids bearing initial oncogenic mutations. Iterative analysis nominated the kinase DYRK2 at 12q15 as an amplified head and neck squamous carcinoma oncogene in p53-/- oral mucosal organoids. Similarly, FGF3, amplified at 11q13 in 41% of esophageal squamous carcinomas, promoted p53-/- esophageal organoid growth reversible by small molecule and soluble receptor antagonism of FGFRs. Our studies establish organoid-based contextual screening of candidate genomic drivers, enabling functional evaluation during early tumorigenesis.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Oncogenes , Transformação Celular Neoplásica/genética , Neoplasias/genética , Carcinogênese/genética , Amplificação de Genes
3.
Nat Commun ; 14(1): 2947, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268690

RESUMO

Derangements of the blood-brain barrier (BBB) or blood-retinal barrier (BRB) occur in disorders ranging from stroke, cancer, diabetic retinopathy, and Alzheimer's disease. The Norrin/FZD4/TSPAN12 pathway activates WNT/ß-catenin signaling, which is essential for BBB and BRB function. However, systemic pharmacologic FZD4 stimulation is hindered by obligate palmitoylation and insolubility of native WNTs and suboptimal properties of the FZD4-selective ligand Norrin. Here, we develop L6-F4-2, a non-lipidated, FZD4-specific surrogate which significantly improves subpicomolar affinity versus native Norrin. In Norrin knockout (NdpKO) mice, L6-F4-2 not only potently reverses neonatal retinal angiogenesis deficits, but also restores BRB and BBB function. In adult C57Bl/6J mice, post-stroke systemic delivery of L6-F4-2 strongly reduces BBB permeability, infarction, and edema, while improving neurologic score and capillary pericyte coverage. Our findings reveal systemic efficacy of a bioengineered FZD4-selective WNT surrogate during ischemic BBB dysfunction, with potential applicability to adult CNS disorders characterized by an aberrant blood-brain barrier.


Assuntos
Barreira Hematoencefálica , Receptores Frizzled , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Retina/metabolismo , Barreira Hematorretiniana/metabolismo , Via de Sinalização Wnt
4.
Artigo em Inglês | MEDLINE | ID: mdl-36987582

RESUMO

The neurovascular unit is a dynamic microenvironment with tightly controlled signaling and transport coordinated by the blood-brain barrier (BBB). A properly functioning BBB allows sufficient movement of ions and macromolecules to meet the high metabolic demand of the central nervous system (CNS), while protecting the brain from pathogenic and noxious insults. This review describes the main cell types comprising the BBB and unique molecular signatures of these cells. Additionally, major signaling pathways for BBB development and maintenance are highlighted. Finally, we describe the pathophysiology of BBB diseases, their relationship to barrier dysfunction, and identify avenues for therapeutic intervention.

5.
Trends Cancer ; 8(10): 870-880, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35773148

RESUMO

Cancer immunotherapies, particularly immune checkpoint inhibitors, are rapidly becoming standard-of-care for many cancers. The ascendance of immune checkpoint inhibitor treatment and limitations in the accurate prediction of clinical response thereof have provided significant impetus to develop preclinical models that can guide therapeutic intervention. Traditional organoid culture methods that exclusively grow tumor epithelium as patient-derived organoids are under investigation as a personalized platform for drug discovery and for predicting clinical efficacy of chemotherapies and targeted agents. Recently, the patient-derived tumor organoid platform has evolved to contain more complex stromal and immune compartments needed to assess immunotherapeutic efficacy. We review the different methodologies for developing a more holistic patient-derived tumor organoid platform and for modeling the native immune tumor microenvironment.


Assuntos
Neoplasias , Organoides , Humanos , Inibidores de Checkpoint Imunológico , Neoplasias/patologia , Neoplasias/terapia , Organoides/patologia , Medicina de Precisão , Microambiente Tumoral
6.
Sci Rep ; 12(1): 2319, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35149728

RESUMO

RECK encodes a membrane-anchored protease-regulator which is often downregulated in a wide variety of cancers, and reduced RECK expression often correlates with poorer prognoses. In mouse models, forced expression of RECK in tumor xenografts results in suppression of tumor angiogenesis, invasion, and metastasis. RECK mutations, however, are rare in cancer genomes, suggesting that agents that re-activate dormant RECK may be of clinical value. We found a potent RECK-inducer, DSK638, that inhibits spontaneous lung metastasis in our mouse xenograft model. Induction of RECK expression involves SP1 sites in its promoter and may be mediated by KLF2. DSK638 also upregulates MXI1, an endogenous MYC-antagonist, and inhibition of metastasis by DSK638 is dependent on both RECK and MXI1. This study demonstrates the utility of our approach (using a simple reporter assay followed by multiple phenotypic assays) and DSK638 itself (as a reference compound) in finding potential metastasis-suppressing drugs.


Assuntos
Proteínas Ligadas por GPI/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Metástase Neoplásica/prevenção & controle , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Genes Reporter , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Cell Stem Cell ; 27(5): 840-851.e6, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32818433

RESUMO

Modulation of Wnt signaling has untapped potential in regenerative medicine due to its essential functions in stem cell homeostasis. However, Wnt lipidation and Wnt-Frizzled (Fzd) cross-reactivity have hindered translational Wnt applications. Here, we designed and engineered water-soluble, Fzd subtype-specific "next-generation surrogate" (NGS) Wnts that hetero-dimerize Fzd and Lrp6. NGS Wnt supports long-term expansion of multiple different types of organoids, including kidney, colon, hepatocyte, ovarian, and breast. NGS Wnts are superior to Wnt3a conditioned media in organoid expansion and single-cell organoid outgrowth. Administration of Fzd subtype-specific NGS Wnt in vivo reveals that adult intestinal crypt proliferation can be promoted by agonism of Fzd5 and/or Fzd8 receptors, while a broad spectrum of Fzd receptors can induce liver zonation. Thus, NGS Wnts offer a unified organoid expansion protocol and a laboratory "tool kit" for dissecting the functions of Fzd subtypes in stem cell biology.


Assuntos
Receptores Frizzled , Organoides , Hepatócitos , Células-Tronco , Via de Sinalização Wnt
8.
Trends Immunol ; 41(8): 652-664, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32654925

RESUMO

Cellular interactions in the tumor microenvironment (TME) significantly govern cancer progression and drug response. The efficacy of clinical immunotherapies has fostered an exponential interest in the tumor immune microenvironment, which in turn has engendered a pressing need for robust experimental systems modeling patient-specific tumor-immune interactions. Traditional 2D in vitro tumor immunotherapy models have reconstituted immortalized cancer cell lines with immune components, often from peripheral blood. However, newly developed 3D in vitro organoid culture methods now allow the routine culture of primary human tumor biopsies and increasingly incorporate immune components. Here, we present a viewpoint on recent advances, and propose translational applications of tumor organoids for immuno-oncology research, immunotherapy modeling, and precision medicine.


Assuntos
Modelos Imunológicos , Neoplasias , Organoides , Microambiente Tumoral , Humanos , Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , Medicina de Precisão , Microambiente Tumoral/imunologia
9.
Nat Struct Mol Biol ; 26(6): 407-414, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31086346

RESUMO

To discriminate between closely related members of a protein family that differ at a limited number of spatially distant positions is a challenge for drug discovery. We describe a combined computational design and experimental selection approach for generating binders targeting functional sites with large, shape complementary interfaces to read out subtle sequence differences for subtype-specific antagonism. Repeat proteins are computationally docked against a functionally relevant region of the target protein surface that varies in the different subtypes, and the interface sequences are optimized for affinity and specificity first computationally and then experimentally. We used this approach to generate a series of human Frizzled (Fz) subtype-selective antagonists with extensive shape complementary interaction surfaces considerably larger than those of repeat proteins selected from random libraries. In vivo administration revealed that Wnt-dependent pericentral liver gene expression involves multiple Fz subtypes, while maintenance of the intestinal crypt stem cell compartment involves only a limited subset.


Assuntos
Receptores Frizzled/antagonistas & inibidores , Receptores Frizzled/metabolismo , Simulação de Acoplamento Molecular , Animais , Anquirinas/química , Anquirinas/metabolismo , Linhagem Celular , Cristalografia por Raios X , Descoberta de Drogas , Duodeno/citologia , Duodeno/metabolismo , Receptores Frizzled/química , Humanos , Camundongos Endogâmicos C57BL , Ligação Proteica , Conformação Proteica , Células-Tronco/citologia , Células-Tronco/metabolismo
10.
Cell Rep ; 25(2): 339-349.e9, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30304675

RESUMO

WNT7A and WNT7B control CNS angiogenesis and blood-brain barrier formation by activating endothelial Wnt/ß-catenin signaling. The GPI-anchored protein RECK and adhesion G protein-coupled receptor GPR124 critically regulate WNT7-specific signaling in concert with FZD and LRP co-receptors. Here, we demonstrate that primarily the GPR124 ectodomain, but not its transmembrane and intracellular domains, mediates RECK/WNT7-induced canonical Wnt signaling. Moreover, RECK is the predominant binding partner of GPR124 in rat brain blood vessels in situ. WNT7A and WNT7B, but not WNT3A, directly bind to purified recombinant soluble RECK, full-length cell surface RECK, and the GPR124:RECK complex. Chemical cross-linking indicates that RECK and WNT7A associate with 1:1 stoichiometry, which stabilizes short-lived, active, monomeric, hydrophobic WNT7A. In contrast, free WNT7A rapidly converts into inactive, hydrophilic aggregates. Overall, RECK is a selective WNT7 receptor that mediates GPR124/FZD/LRP-dependent canonical Wnt/ß-catenin signaling by stabilizing active cell surface WNT7, suggesting isoform-specific regulation of Wnt bioavailability.


Assuntos
Receptores Frizzled/metabolismo , Proteínas Ligadas por GPI/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Wnt/metabolismo , Proteína Wnt3A/metabolismo , Animais , Disponibilidade Biológica , Barreira Hematoencefálica , Feminino , Receptores Frizzled/genética , Proteínas Ligadas por GPI/genética , Células HEK293 , Humanos , Masculino , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/genética , Proteínas Wnt/genética , Proteína Wnt3A/genética , beta Catenina/genética , beta Catenina/metabolismo
11.
Nat Med ; 23(4): 450-460, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28288111

RESUMO

Although blood-brain barrier (BBB) compromise is central to the etiology of diverse central nervous system (CNS) disorders, endothelial receptor proteins that control BBB function are poorly defined. The endothelial G-protein-coupled receptor (GPCR) Gpr124 has been reported to be required for normal forebrain angiogenesis and BBB function in mouse embryos, but the role of this receptor in adult animals is unknown. Here Gpr124 conditional knockout (CKO) in the endothelia of adult mice did not affect homeostatic BBB integrity, but resulted in BBB disruption and microvascular hemorrhage in mouse models of both ischemic stroke and glioblastoma, accompanied by reduced cerebrovascular canonical Wnt-ß-catenin signaling. Constitutive activation of Wnt-ß-catenin signaling fully corrected the BBB disruption and hemorrhage defects of Gpr124-CKO mice, with rescue of the endothelial gene tight junction, pericyte coverage and extracellular-matrix deficits. We thus identify Gpr124 as an endothelial GPCR specifically required for endothelial Wnt signaling and BBB integrity under pathological conditions in adult mice. This finding implicates Gpr124 as a potential therapeutic target for human CNS disorders characterized by BBB disruption.


Assuntos
Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Glioblastoma/genética , Infarto da Artéria Cerebral Média/genética , Hemorragias Intracranianas/genética , Receptores Acoplados a Proteínas G/genética , Junções Íntimas/metabolismo , Animais , Barreira Hematoencefálica/ultraestrutura , Modelos Animais de Doenças , Células Endoteliais/ultraestrutura , Matriz Extracelular/metabolismo , Citometria de Fluxo , Imunofluorescência , Glioblastoma/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Hemorragias Intracranianas/metabolismo , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Microvasos , Pericitos/ultraestrutura , Reação em Cadeia da Polimerase em Tempo Real , Junções Íntimas/ultraestrutura , Via de Sinalização Wnt
12.
Cancer Inform ; 15: 91-102, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27226706

RESUMO

RECK is downregulated in many tumors, and forced RECK expression in tumor cells often results in suppression of malignant phenotypes. Recent findings suggest that RECK is upregulated after epithelial-mesenchymal transition (EMT) in normal epithelium-derived cells but not in cancer cells. Since several microRNAs (miRs) are known to target RECK mRNA, we hypothesized that certain miR(s) may be involved in this suppression of RECK upregulation after EMT in cancer cells. To test this hypothesis, we used three approaches: (1) text mining to find miRs relevant to EMT in cancer cells, (2) predicting miR targets using four algorithms, and (3) comparing miR-seq data and RECK mRNA data using a novel non-parametric method. These approaches identified the miR-183-96-182 cluster as a strong candidate. We also looked for transcription factors and signaling molecules that may promote cancer EMT, miR-183-96-182 upregulation, and RECK downregulation. Here we describe our methods, findings, and a testable hypothesis on how RECK expression could be regulated in cancer cells after EMT.

13.
Oncotarget ; 7(50): 82158-82169, 2016 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-27058625

RESUMO

The membrane-anchored glycoprotein RECK negatively regulates multiple metalloproteinases and is frequently downregulated in tumors. Forced RECK expression in cancer cells results in suppression of tumor angiogenesis, invasion, and metastasis in xenograft models. A previous methylome study on breast cancer tissues detected inverse correlation between RECK CpG methylation (in an intron-1 region) and relapse-free survival. In this study, we focused on another region of the RECK CpG island (a promoter/exon-1 region) and found an inverse correlation between its methylation and RECK-inducibility by an HDAC inhibitor, MS275, among a panel of breast cancer cell lines (n=15). In clinical samples (n=62), RECK intron-1 methylation was prevalent among luminal breast cancers as reported previously (26 of 38 cases; 68%) and particularly enriched in tumors of the ER+PR- subclass (10 of 10 cases) and of higher histological grades (Grade 2 and 3; 28 of 43 cases; P=0.006). In about a half of these cases, promoter/exon-1 methylation was absent, and hence, RECK may be inducible by certain drugs such as MS275. Our results indicate the value of combined use of two RECK methylation markers for predicting prognosis and drug-sensitivity of breast cancers.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Ilhas de CpG , Metilação de DNA , Epigênese Genética , Proteínas Ligadas por GPI/genética , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Benzamidas/farmacologia , Neoplasias da Mama/patologia , Metilação de DNA/efeitos dos fármacos , Decitabina , Relação Dose-Resposta a Droga , Epigênese Genética/efeitos dos fármacos , Éxons , Feminino , Inibidores de Histona Desacetilases/farmacologia , Humanos , Células MCF-7 , Metotrexato/farmacologia , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Regiões Promotoras Genéticas , Piridinas/farmacologia , Fatores de Tempo
14.
Sci Rep ; 4: 4568, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24691523

RESUMO

Expression of a mesenchymal phenotype is often associated with invasive/metastatic behaviors of carcinoma cells. Acquisition of a mesenchymal phenotype by a carcinoma cell is known as epithelial-mesenchymal transition (EMT). The membrane-anchored matrix metalloproteinase-regulator RECK is abundant in normal mesenchymal cells. In aggressive carcinomas, however, RECK expression is often downregulated. This apparent paradox prompted us to clarify the relationship between EMT and RECK. We found that TGFß-induced E-cadherin downregulation, a hallmark of EMT, is accompanied by RECK-upregulation in a non-tumorigenic epithelial cell line (MCF10A). In contrast, the loss of E-cadherin expression is uncoupled from RECK-upregulation in carcinoma-derived cell lines (MCF7, MDA-MB-231, and A549). When RECK was artificially expressed in A549 cells, it showed little effect on EMT but elevated the level of integrin α5 and attenuated cell proliferation and migration. These findings implicate RECK in the regulation of proliferation and migration of normal epithelial cells after EMT and suggest how the uncoupling between EMT and RECK-upregulation impacts on the fates and behaviors of carcinoma cells.


Assuntos
Caderinas/genética , Carcinoma/genética , Regulação para Baixo/genética , Proteínas Ligadas por GPI/genética , Regulação para Cima/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Integrina alfa5/genética , Células MCF-7 , Fator de Crescimento Transformador beta/genética
15.
Brain Tumor Pathol ; 28(1): 1-12, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21274750

RESUMO

There is now compelling evidence that gliomas harbor a small population of cells, termed glioma-initiating cells (GICs), characterized by their ability to undergo self-renewal and initiate tumorigenesis. The development of therapeutic strategies targeted toward GIC signaling may improve the treatment of malignant gliomas. The characterization of GICs provides a clue to elucidating histological heterogeneity and treatment failure. The role of the stem cell marker CD133 in the initiation and progression of brain tumors is still uncertain. Here, we review some of the signaling mechanisms involved in GIC biology, such as phosphatase and tensin homolog (PTEN), sonic hedgehog, Notch, and WNT signaling pathways, maternal embryonic leucine-zipper kinase (MELK), BMI1, and Janus kinase signal transducer and activator of transcription (JAK-STAT) signaling. In addition, we discuss the role of microRNAs in GICs by focusing on microRNA-21 regulation by type I interferon.


Assuntos
Antígenos CD/fisiologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Transformação Celular Neoplásica/genética , Glioma/patologia , Glioma/terapia , Glicoproteínas/fisiologia , Terapia de Alvo Molecular , PTEN Fosfo-Hidrolase/fisiologia , Peptídeos/fisiologia , Transdução de Sinais/fisiologia , Antígeno AC133 , Progressão da Doença , Proteínas Hedgehog/fisiologia , Humanos , MicroRNAs/fisiologia , Proteínas Nucleares/fisiologia , Complexo Repressor Polycomb 1 , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Repressoras/fisiologia , Fator de Transcrição STAT3/fisiologia , Transdução de Sinais/genética , Proteínas Wnt/fisiologia
16.
Cancer Lett ; 284(1): 71-9, 2009 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-19457609

RESUMO

The response of cancer patients to interferon (IFN) treatment is long-lasting, indicating that IFN may act on small cancer stem cell populations. Glioma-initiating cells (GICs) can self-renew and induce the formation of heterogeneously differentiated tumor cells and are resistant to chemotherapeutic agents like temozolomide. In this study, we showed that via STAT3 signaling, IFN-beta suppressed the proliferation, self-renewal, and tumorigenesis of GICs, induced their terminal differentiation to mature oligodendroglia-like cells, and exhibited synergistic cytotoxicity with temozolomide. Therefore, IFN may be a potential therapeutic agent for inducing the terminal differentiation of GICs.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Interferon beta/farmacologia , Oligodendroglia/efeitos dos fármacos , Fator de Transcrição STAT3/fisiologia , Neoplasias Encefálicas/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Humanos , Oligodendroglia/patologia , Transdução de Sinais , Temozolomida
17.
Dent Mater J ; 23(4): 650-5, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15688734

RESUMO

Our previous study reported that an osteopontin-derived peptide SVVYGLR activates the adhesion, migration and tube formation abilities of endothelial cells in vitro. The present study investigated angiogenesis due to synthetic SVVYGLR and mutant peptides in vivo. Mutant peptides (n = 7) were synthesized by substituting alanine (A) for one of the 7 amino acids comprising SVVYGLR. In dorsal air sac assay, mouse dorsal skin 5 days after implantation of a chamber filled with SVVYGLR had approximately the same number of newly formed blood vessels to that filled with vascular endothelial growth factor (VEGF). The ability of angiogenesis due to SVVAGLR was significantly lower than that due to other 6 mutant peptides and SVVYGLR. This indicates that tyrosine (Y) plays an important role in angiogenesis due to SVVYGLR.


Assuntos
Indutores da Angiogênese/farmacologia , Células Endoteliais/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Sialoglicoproteínas/farmacologia , Motivos de Aminoácidos , Substituição de Aminoácidos , Indutores da Angiogênese/química , Animais , Células Endoteliais/fisiologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Osteopontina , Sialoglicoproteínas/química , Sialoglicoproteínas/fisiologia , Tirosina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA