Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(7): 5758-5782, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38511649

RESUMO

Eukaryotic translation initiation factor 2B (eIF2B) is a key component of the integrated stress response (ISR), which regulates protein synthesis and stress granule formation in response to cellular insult. Modulation of the ISR has been proposed as a therapeutic strategy for treatment of neurodegenerative diseases such as vanishing white matter (VWM) disease and amyotrophic lateral sclerosis (ALS) based on its ability to improve cellular homeostasis and prevent neuronal degeneration. Herein, we report the small-molecule discovery campaign that identified potent, selective, and CNS-penetrant eIF2B activators using both structure- and ligand-based drug design. These discovery efforts culminated in the identification of DNL343, which demonstrated a desirable preclinical drug profile, including a long half-life and high oral bioavailability across preclinical species. DNL343 was progressed into clinical studies and is currently undergoing evaluation in late-stage clinical trials for ALS.


Assuntos
Esclerose Lateral Amiotrófica , Leucoencefalopatias , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/metabolismo , Mutação , Fator de Iniciação 2B em Eucariotos/genética , Fator de Iniciação 2B em Eucariotos/metabolismo , Encéfalo/metabolismo , Leucoencefalopatias/metabolismo
2.
Mol Metab ; 80: 101886, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38246589

RESUMO

OBJECTIVE: The central melanocortin system is essential for the regulation of food intake and body weight. Agouti-related protein (AgRP) is the sole orexigenic component of the central melanocortin system and is conserved across mammalian species. AgRP is currently known to be expressed exclusively in the mediobasal hypothalamus, and hypothalamic AgRP-expressing neurons are essential for feeding. Here we characterized a previously unknown population of AgRP cells in the mouse hindbrain. METHODS: Expression of AgRP in the hindbrain was investigated using gene expression analysis, single-cell RNA sequencing, immunofluorescent analysis and multiple transgenic mice with reporter expressions. Activation of AgRP neurons was achieved by Designer Receptors Exclusively Activated by Designer Drugs (DREADD) and by transcranial focal photo-stimulation using a step-function opsin with ultra-high light sensitivity (SOUL). RESULTS: AgRP expressing cells were present in the area postrema (AP) and the adjacent subpostrema area (SubP) and commissural nucleus of the solitary tract (cNTS) of the mouse hindbrain (termed AgRPHind herein). AgRPHind cells consisted of locally projecting neurons as well as tanycyte-like cells. Food deprivation stimulated hindbrain Agrp expression as well as neuronal activity of subsets of AgRPHind cells. In adult mice that lacked hypothalamic AgRP neurons, chemogenetic activation of AgRP neurons resulted in hyperphagia and weight gain. In addition, transcranial focal photo-stimulation of hindbrain AgRP cells increased food intake in adult mice with or without hypothalamic AgRP neurons. CONCLUSIONS: Our study indicates that the central melanocortin system in the hindbrain possesses an orexigenic component, and that AgRPHind neurons stimulate feeding independently of hypothalamic AgRP neurons.


Assuntos
Hipotálamo , Melanocortinas , Camundongos , Animais , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Hipotálamo/metabolismo , Camundongos Transgênicos , Melanocortinas/metabolismo , Rombencéfalo/metabolismo , Mamíferos/metabolismo
3.
J Med Chem ; 65(24): 16290-16312, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36469401

RESUMO

Dual leucine zipper kinase (DLK) and leucine zipper-bearing kinase (LZK) are regulators of neuronal degeneration and axon growth. Therefore, there is a considerable interest in developing DLK/LZK inhibitors for neurodegenerative diseases. Herein, we use ligand- and structure-based drug design approaches for identifying novel amino-pyrazine inhibitors of DLK/LZK. DN-1289 (14), a potent and selective dual DLK/LZK inhibitor, demonstrated excellent in vivo plasma half-life across species and is anticipated to freely penetrate the central nervous system with no brain impairment based on in vivo rodent pharmacokinetic studies and human in vitro transporter data. Proximal target engagement and disease relevant pathway biomarkers were also favorably regulated in an in vivo model of amyotrophic lateral sclerosis.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Humanos , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/metabolismo , Zíper de Leucina , MAP Quinase Quinase Quinases , Sistema Nervoso Central/metabolismo , Encéfalo/metabolismo , Doenças Neurodegenerativas/metabolismo
4.
Mol Neurodegener ; 17(1): 41, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690868

RESUMO

BACKGROUND: Genetic mutations underlying familial Alzheimer's disease (AD) were identified decades ago, but the field is still in search of transformative therapies for patients. While mouse models based on overexpression of mutated transgenes have yielded key insights in mechanisms of disease, those models are subject to artifacts, including random genetic integration of the transgene, ectopic expression and non-physiological protein levels. The genetic engineering of novel mouse models using knock-in approaches addresses some of those limitations. With mounting evidence of the role played by microglia in AD, high-dimensional approaches to phenotype microglia in those models are critical to refine our understanding of the immune response in the brain. METHODS: We engineered a novel App knock-in mouse model (AppSAA) using homologous recombination to introduce three disease-causing coding mutations (Swedish, Arctic and Austrian) to the mouse App gene. Amyloid-ß pathology, neurodegeneration, glial responses, brain metabolism and behavioral phenotypes were characterized in heterozygous and homozygous AppSAA mice at different ages in brain and/ or biofluids. Wild type littermate mice were used as experimental controls. We used in situ imaging technologies to define the whole-brain distribution of amyloid plaques and compare it to other AD mouse models and human brain pathology. To further explore the microglial response to AD relevant pathology, we isolated microglia with fibrillar Aß content from the brain and performed transcriptomics and metabolomics analyses and in vivo brain imaging to measure energy metabolism and microglial response. Finally, we also characterized the mice in various behavioral assays. RESULTS: Leveraging multi-omics approaches, we discovered profound alteration of diverse lipids and metabolites as well as an exacerbated disease-associated transcriptomic response in microglia with high intracellular Aß content. The AppSAA knock-in mouse model recapitulates key pathological features of AD such as a progressive accumulation of parenchymal amyloid plaques and vascular amyloid deposits, altered astroglial and microglial responses and elevation of CSF markers of neurodegeneration. Those observations were associated with increased TSPO and FDG-PET brain signals and a hyperactivity phenotype as the animals aged. DISCUSSION: Our findings demonstrate that fibrillar Aß in microglia is associated with lipid dyshomeostasis consistent with lysosomal dysfunction and foam cell phenotypes as well as profound immuno-metabolic perturbations, opening new avenues to further investigate metabolic pathways at play in microglia responding to AD-relevant pathogenesis. The in-depth characterization of pathological hallmarks of AD in this novel and open-access mouse model should serve as a resource for the scientific community to investigate disease-relevant biology.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Amiloidose/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Placa Amiloide/patologia , Receptores de GABA/metabolismo
5.
Sci Signal ; 15(733): eabj8204, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35536884

RESUMO

Variants in the gene encoding ankyrin repeat and SOCS box-containing 4 (ASB4) are linked to human obesity. Here, we characterized the pathways underlying the metabolic functions of ASB4. Hypothalamic Asb4 expression was suppressed by fasting in wild-type mice but not in mice deficient in AgRP, which encodes Agouti-related protein (AgRP), an appetite-stimulating hormone, suggesting that ASB4 is a negative target of AgRP. Many ASB4 neurons in the brain were adjacent to AgRP terminals, and feeding induced by AgRP neuronal activation was disrupted in Asb4-deficient mice. Acute knockdown of Asb4 in the brain caused marked hyperphagia due to increased meal size, and Asb4 deficiency led to increased meal size and food intake at the onset of refeeding, when very large meals were consumed. Asb4-deficient mice were resistant to the meal-terminating effects of exogenously administered calcitonin and showed decreased neuronal expression of Calcr, which encodes the calcitonin receptor. Pro-opiomelanocortin (POMC) neurons in the arcuate nucleus in mice are involved in glucose homeostasis, and Asb4 deficiency specifically in POMC neurons resulted in glucose intolerance that was independent of obesity. Furthermore, individuals with type 2 diabetes showed reduced ASB4 abundance in the infundibular nuclei, the human equivalent of the arcuate nucleus. Together, our results indicate that ASB4 acts in the brain to improve glucose homeostasis and to induce satiety after substantial meals, particularly those after food deprivation.


Assuntos
Diabetes Mellitus Tipo 2 , Neuropeptídeos , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Proteína Relacionada com Agouti/farmacologia , Animais , Calcitonina/metabolismo , Calcitonina/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Homeostase , Hipotálamo/metabolismo , Camundongos , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Obesidade/genética , Obesidade/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/farmacologia
6.
Am J Physiol Endocrinol Metab ; 318(5): E655-E666, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32045262

RESUMO

Excessive alcohol consumption, including binge drinking, is a common cause of fatty liver disease. Binge drinking rapidly induces hepatic steatosis, an early step in the pathogenesis of chronic liver injury. Despite its prevalence, the process by which excessive alcohol consumption promotes hepatic lipid accumulation remains unclear. Alcohol exerts potent effects on the brain, including hypothalamic neurons crucial for metabolic regulation. However, whether or not the brain plays a role in alcohol-induced hepatic steatosis is unknown. In the brain, alcohol increases extracellular levels of adenosine, a potent neuromodulator, and previous work implicates adenosine signaling as being important for the development of alcoholic fatty liver disease. Acute alcohol exposure also increases both the activity of agouti-related protein (AgRP)-expressing neurons and AgRP immunoreactivity. Here, we show that adenosine receptor A2B signaling in the brain modulates the extent of alcohol-induced fatty liver in mice and that both the AgRP neuropeptide and the sympathetic nervous system are indispensable for hepatic steatosis induced by bingelike alcohol consumption. Together, these results indicate that the brain plays an integral role in alcohol-induced hepatic lipid accumulation and that central adenosine signaling, hypothalamic AgRP, and the sympathetic nervous system are crucial mediators of this process.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Fígado Gorduroso Alcoólico/metabolismo , Hipotálamo/metabolismo , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Neurônios/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Masculino , Camundongos
7.
Cell Rep ; 19(11): 2257-2271, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28614713

RESUMO

Neurons expressing agouti-related protein (AgRP) are essential for feeding. The majority of these neurons are located outside the blood-brain barrier (BBB), allowing them to directly sense circulating metabolic factors. Here, we show that, in adult mice, AgRP neurons outside the BBB (AgRPOBBB) were rapidly ablated by peripheral administration of monosodium glutamate (MSG), whereas AgRP neurons inside the BBB and most proopiomelanocortin (POMC) neurons were spared. MSG treatment induced proliferation of tanycytes, the putative hypothalamic neural progenitor cells, but the newly proliferated tanycytes did not become neurons. Intriguingly, AgRPOBBB neuronal number increased within a week after MSG treatment, and newly emerging AgRP neurons were derived from post-mitotic cells, including some from the Pomc-expressing cell lineage. Our study reveals that the lack of protection by the BBB renders AgRPOBBB vulnerable to lesioning by circulating toxins but that the rapid re-emergence of AgRPOBBB is part of a reparative process to maintain energy balance.


Assuntos
Barreira Hematoencefálica/citologia , Hipotálamo/citologia , Neurônios/citologia , Pró-Opiomelanocortina/metabolismo , Animais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Hipotálamo/metabolismo , Camundongos , Neurônios/metabolismo
8.
Bone ; 84: 139-147, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26721736

RESUMO

The neuropeptide Y system is known to play an important role in the regulation of bone homeostasis and while the functions of its major receptors, Y1R and Y2R, in this process have become clearer, the contributions of other Y-receptors, like the y6 receptor (y6R), are unknown. Y6R expression is restricted to the suprachiasmatic nucleus (SCN) of the hypothalamus, an area known to regulate circadian rhythms, and the testis. Here we show that lack of y6R signalling, results in significant reduction in bone mass, but no changes in bone length. Male and female y6R knockout (KO) mice display reduced cortical and cancellous bone volume in axial and appendicular bones. Mechanistically, the reduction in cancellous bone is the result of an uncoupling of bone remodelling, leading to an increase in osteoclast surface and number, and a reduction in osteoblast number, osteoid surface, mineralizing surface and bone formation rate. y6R KO mice displayed increased numbers of osteoclast precursors and produced greater numbers of osteoclasts in RANKL-treated cultures. They also produced fewer CFU-ALP osteoblast precursors in the marrow and showed reduced mineralization in primary osteoblastic cultures, as well as reduced expression for the osteoblast lineage marker, alkaline phosphatase, in bone isolates. The almost exclusive location of y6Rs in the hypothalamus suggests a critical role of central neuronal pathways controlling this uncoupling of bone remodelling which is in line with known actions or other Y-receptors in the brain. In conclusion, y6R signalling is required for maintenance of bone mass, with loss of y6R uncoupling bone remodelling and resulting in a negative bone balance. This study expands the scope of hypothalamic regulation of bone, highlighting the importance for neural/endocrine coordination and their marked effect upon skeletal homeostasis.


Assuntos
Reabsorção Óssea/metabolismo , Osteogênese , Receptores de Neuropeptídeo Y/metabolismo , Núcleo Supraquiasmático/metabolismo , Envelhecimento/metabolismo , Animais , Medula Óssea/metabolismo , Reabsorção Óssea/patologia , Calcificação Fisiológica , Contagem de Células , Diferenciação Celular , Feminino , Regulação da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteoclastos/patologia , Osteócitos/metabolismo , Osteócitos/patologia , Osteogênese/genética , Receptores de Neuropeptídeo Y/deficiência , Receptores de Neuropeptídeo Y/genética , Transdução de Sinais , Núcleo Supraquiasmático/patologia
9.
Mol Metab ; 4(11): 881-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26629411

RESUMO

BACKGROUND: The proper establishment of hypothalamic feeding circuits during early development has a profound influence on energy homeostasis, and perturbing this process could predispose individuals to obesity and its associated consequences later in life. The maturation of hypothalamic neuronal circuitry in rodents takes place during the initial postnatal weeks, and this coincides with a dramatic surge in the circulating level of leptin, which is known to regulate the outgrowth of key neuronal projections in the maturing hypothalamus. Coincidently, this early postnatal period also marks the rapid proliferation and expansion of astrocytes in the brain. METHODS: Here we examined the effects of leptin on the proliferative capacity of astrocytes in the developing hypothalamus by treating postnatal mice with leptin. Mutant mice were also generated to conditionally remove leptin receptors from glial fibrillary acidic protein (GFAP)-expressing cells in the postnatal period. RESULTS AND CONCLUSIONS: We show that GFAP-expressing cells in the periventricular zone of the 3rd ventricle were responsive to leptin during the initial postnatal week. Leptin enhanced the proliferation of astrocytes in the postnatal hypothalamus and conditional removal of leptin receptors from GFAP-expressing cells during early postnatal period limited astrocyte proliferation. While increasing evidence demonstrates a direct role of leptin in regulating astrocytes in the adult brain, and given the essential function of astrocytes in modulating neuronal function and connectivity, our study indicates that leptin may exert its metabolic effects, in part, by promoting hypothalamic astrogenesis during early postnatal development.

10.
Neuropeptides ; 48(3): 143-51, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24680736

RESUMO

OBJECTIVE: Orexigenic neuropeptide Y (NPY) and dynorphin (DYN) regulate energy homeostasis. Single NPY or dynorphin deletion reduces food intake or increases fat loss. Future developments of obesity therapeutics involve targeting multiple pathways. We hypothesised that NPY and dynorphin regulate energy homeostasis independently, thus double NPY and dynorphin ablation would result in greater weight and/or fat loss than the absence of NPY or dynorphin alone. DESIGN AND METHODS: We generated single and double NPY and dynorphin knockout mice (NPYΔ, DYNΔ, NPYDYNΔ) and compared body weight, adiposity, feeding behaviour, glucose homeostasis and brown adipose tissue uncoupling protein-1 (UCP-1) expression to wildtype counterparts. RESULTS: Body weight and adiposity were significantly increased in NPYDYNΔ, but not in NPYΔ or DYNΔ. This was not due to increased food intake or altered UCP-1 expression, which were not significantly altered in double knockouts. NPYDYNΔ mice demonstrated increased body weight loss after a 24-h fast, with no effect on serum glucose levels after glucose injection. CONCLUSIONS: Contrary to the predicted phenotype delineated from single knockouts, double NPY and dynorphin deletion resulted in heavier mice, with increased adiposity, despite no significant changes in food intake or UCP-1 activity. This indicates that combining long-term opioid antagonism with blockade of NPY-ergic systems may not produce anti-obesity effects.


Assuntos
Dinorfinas/genética , Metabolismo Energético/genética , Neuropeptídeo Y/genética , Obesidade/genética , Tecido Adiposo/metabolismo , Animais , Regulação do Apetite/genética , Peso Corporal , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
11.
Cell Metab ; 19(1): 58-72, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24411939

RESUMO

Y-receptors control energy homeostasis, but the role of Npy6 receptors (Npy6r) is largely unknown. Young Npy6r-deficient (Npy6r(-/-)) mice have reduced body weight, lean mass, and adiposity, while older and high-fat-fed Npy6r(-/-) mice have low lean mass with increased adiposity. Npy6r(-/-) mice showed reduced hypothalamic growth hormone releasing hormone (Ghrh) expression and serum insulin-like growth factor-1 (IGF-1) levels relative to WT. This is likely due to impaired vasoactive intestinal peptide (VIP) signaling in the suprachiasmatic nucleus (SCN), where we found Npy6r coexpressed in VIP neurons. Peripheral administration of pancreatic polypeptide (PP) increased Fos expression in the SCN, increased energy expenditure, and reduced food intake in WT, but not Npy6r(-/-), mice. Moreover, intraperitoneal (i.p.) PP injection increased hypothalamic Ghrh mRNA expression and serum IGF-1 levels in WT, but not Npy6r(-/-), mice, an effect blocked by intracerebroventricular (i.c.v.) Vasoactive Intestinal Peptide (VPAC) receptors antagonism. Thus, PP-initiated signaling through Npy6r in VIP neurons regulates the growth hormone axis and body composition.


Assuntos
Metabolismo Energético , Homeostase , Polipeptídeo Pancreático/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Transdução de Sinais , Núcleo Supraquiasmático/metabolismo , Adiposidade , Animais , Peso Corporal , Corticosterona/metabolismo , Dieta , Comportamento Alimentar , Fertilidade , Fator de Crescimento Insulin-Like I/metabolismo , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/sangue , Obesidade/patologia , Receptores dos Hormônios Gastrointestinais/deficiência , Receptores de Neuropeptídeo Y/deficiência , Núcleo Supraquiasmático/patologia , Magreza/sangue , Magreza/patologia , Peptídeo Intestinal Vasoativo/metabolismo
12.
Neuropeptides ; 46(6): 383-94, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23062312

RESUMO

Chronic opiate usage, whether prescribed or illicit, has been associated with changes in bone mass and is a recognized risk factor for the development of osteoporosis; however, the mechanism behind this effect is unknown. Here we show that lack of dynorphin, an endogenous opioid, in mice (Dyn-/-), resulted in a significantly elevated cancellous bone volume associated with greater mineral apposition rate and increased resorption indices. A similar anabolic phenotype was evident in bone of mice lacking dynorphin's cognate receptor, the kappa opioid receptor. Lack of opioid receptor expression in primary osteoblastic cultures and no change in bone cell function after dynorphin agonist treatment in vitro indicates an indirect mode of action. Consistent with a hypothalamic action, central dynorphin signaling induces extracellular signal-regulated kinase (ERK) phosphorylation and c-fos activation of neurons in the arcuate nucleus of the hypothalamus (Arc). Importantly, this signaling also leads to an increase in Arc NPY mRNA expression, a change known to decrease bone formation. Further implicating NPY in the skeletal effects of dynorphin, Dyn-/-/NPY-/- double mutant mice showed comparable increases in bone formation to single mutant mice, suggesting that dynorphin acts upstream of NPY signaling to control bone formation. Thus the dynorphin system, acting via NPY, may represent a pathway by which higher processes including stress, reward/addiction and depression influence skeletal metabolism. Moreover, understanding of these unique interactions may enable modulation of the adverse effects of exogenous opioid treatment without directly affecting analgesic responses.


Assuntos
Osso e Ossos/fisiologia , Dinorfinas/fisiologia , Homeostase/fisiologia , Animais , Western Blotting , Composição Corporal/genética , Composição Corporal/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Proteínas do Citoesqueleto/metabolismo , DNA Complementar/biossíntese , DNA Complementar/isolamento & purificação , Dinorfinas/genética , Feminino , Homeostase/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Neuropeptídeo Y/fisiologia , Osteoblastos/fisiologia , Gravidez , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA/biossíntese , RNA/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologia , Células Estromais/fisiologia , Tomografia Computadorizada por Raios X
13.
Diabetes ; 61(12): 3228-38, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23011592

RESUMO

Recruitment of activated immune cells into white adipose tissue (WAT) is linked to the development of insulin resistance and obesity, but the mechanism behind this is unclear. Here, we demonstrate that Y1 receptor signaling in immune cells controls inflammation and insulin resistance in obesity. Selective deletion of Y1 receptors in the hematopoietic compartment of mice leads to insulin resistance and inflammation in WAT under high fat-fed conditions. This is accompanied by decreased mRNA expression of the anti-inflammatory marker adiponectin in WAT and an increase of the proinflammatory monocyte chemoattractant protein-1 (MCP-1). In vitro, activated Y1-deficient intraperitoneal macrophages display an increased inflammatory response, with exacerbated secretion of MCP-1 and tumor necrosis factor, whereas addition of neuropeptide Y to wild-type macrophages attenuates the release of these cytokines, this effect being blocked by Y1 but not Y2 receptor antagonism. Importantly, treatment of adipocytes with the supernatant of activated Y1-deficient macrophages causes insulin resistance, as demonstrated by decreased insulin-induced phosphorylation of the insulin receptor and Akt as well as decreased expression of insulin receptor substrate 1. Thus, Y1 signaling in hematopoietic-derived cells such as macrophages is critical for the control of inflammation and insulin resistance in obesity.


Assuntos
Inflamação/metabolismo , Resistência à Insulina/fisiologia , Obesidade/imunologia , Obesidade/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Células 3T3-L1 , Animais , Diferenciação Celular , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Gorduras na Dieta/efeitos adversos , Ingestão de Alimentos/genética , Ingestão de Alimentos/fisiologia , Feminino , Genótipo , Inflamação/genética , Inflamação/imunologia , Resistência à Insulina/genética , Camundongos , Camundongos Knockout , Obesidade/etiologia , Reação em Cadeia da Polimerase , Receptores de Neuropeptídeo Y/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
14.
PLoS One ; 7(6): e40191, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22768253

RESUMO

Neuropeptide Y (NPY) acting in the hypothalamus is one of the most powerful orexigenic agents known. Of the five known Y receptors, hypothalamic Y1 and Y5 have been most strongly implicated in mediating hyperphagic effects. However, knockout of individual Y1 or Y5 receptors induces late-onset obesity--and Y5 receptor knockout also induces hyperphagia, possibly due to redundancy in functions of these genes. Here we show that food intake in mice requires the combined actions of both Y1 and Y5 receptors. Germline Y1Y5 ablation in Y1Y5(-/-) mice results in hypophagia, an effect that is at least partially mediated by the hypothalamus, since mice with adult-onset Y1Y5 receptor dual ablation targeted to the paraventricular nucleus (PVN) of the hypothalamus (Y1Y5(Hyp/Hyp)) also exhibit reduced spontaneous or fasting-induced food intake when fed a high fat diet. Interestingly, despite hypophagia, mice with germline or hypothalamus-specific Y1Y5 deficiency exhibited increased body weight and/or increased adiposity, possibly due to compensatory responses to gene deletion, such as the decreased energy expenditure observed in male Y1Y5(-/-) animals relative to wildtype values. While Y1 and Y5 receptors expressed in other hypothalamic areas besides the PVN--such as the dorsomedial nucleus and the ventromedial hypothalamus--cannot be excluded from having a role in the regulation of food intake, these studies demonstrate the pivotal, combined role of both Y1 and Y5 receptors in the mediation of food intake.


Assuntos
Metabolismo Energético , Comportamento Alimentar , Homeostase , Receptores de Neuropeptídeo Y/metabolismo , Adiposidade/efeitos dos fármacos , Envelhecimento/efeitos dos fármacos , Animais , Dieta Hiperlipídica , Metabolismo Energético/efeitos dos fármacos , Jejum , Comportamento Alimentar/efeitos dos fármacos , Deleção de Genes , Células Germinativas/efeitos dos fármacos , Células Germinativas/metabolismo , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Insulina/farmacologia , Camundongos , Camundongos Knockout , Neuropeptídeo Y/metabolismo , Obesidade/patologia , Especificidade de Órgãos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos
15.
Neurosci Lett ; 515(1): 82-6, 2012 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-22450046

RESUMO

Stress plays a role in the development and severity of psychotic symptoms and there may be a genetic component to stress vulnerability in schizophrenia. Using an established mouse model for schizophrenia, we investigated the behavioural and endocrine response of Nrg1 transmembrane domain mutant mice (Nrg1 HET) and wild type-like (WT) littermates to acute restraint stress. Animals were screened at 3-4 months and 6-7 months of age (before and after onset of hyperlocomotion) for open field behaviour and serum corticosterone levels. In younger mice, stress reduced locomotive and explorative measures and increased anxiety-like behaviour regardless of genotype. Older Nrg1 mutants were less susceptible to the effects of stress on anxiety-related behaviours. All mice responded to restraint stress with robust increases in serum corticosterone. Importantly, the stress-induced increase in corticosterone was more pronounced in Nrg1 mutant than WT mice at the younger but not the older age. Our results suggest that transmembrane domain Nrg1 has only a moderate effect on the acute stress response of mice. The behavioural differences detected between WT and Nrg1 HET mice at the older age were evident without parallel modifications to the glucocorticoid system.


Assuntos
Corticosterona/sangue , Neuregulina-1/genética , Estresse Psicológico/sangue , Estresse Psicológico/genética , Doença Aguda , Envelhecimento/genética , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Restrição Física , Estresse Psicológico/psicologia
16.
Br J Pharmacol ; 163(6): 1170-202, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21545413

RESUMO

The neuropeptide Y system has proven to be one of the most important regulators of feeding behaviour and energy homeostasis, thus presenting great potential as a therapeutic target for the treatment of disorders such as obesity and at the other extreme, anorexia. Due to the initial lack of pharmacological tools that are active in vivo, functions of the different Y receptors have been mainly studied in knockout and transgenic mouse models. However, over recent years various Y receptor selective peptidic and non-peptidic agonists and antagonists have been developed and tested. Their therapeutic potential in relation to treating obesity and other disorders of energy homeostasis is discussed in this review.


Assuntos
Depressores do Apetite/farmacologia , Obesidade/prevenção & controle , Receptores de Neuropeptídeo Y/metabolismo , Sistemas de Liberação de Medicamentos , Regulação da Expressão Gênica , Humanos , Receptores de Neuropeptídeo Y/genética
17.
Obesity (Silver Spring) ; 19(11): 2137-48, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21546930

RESUMO

Y2 receptors, particularly those in the brain, have been implicated in neuropeptide Y (NPY)-mediated effects on energy homeostasis and bone mass. Recent evidence also indicates a role for Y2 receptors in peripheral tissues in this process by promoting adipose tissue accretion; however their effects on energy balance remain unclear. Here, we show that adult-onset conditional knockdown of Y2 receptors predominantly in peripheral tissues results in protection against diet-induced obesity accompanied by significantly reduced weight gain, marked reduction in adiposity and improvements in glucose tolerance without any adverse effect on lean mass or bone. These changes occur in association with significant increases in energy expenditure, respiratory exchange ratio, and physical activity and despite concurrent hyperphagia. On a chow diet, knockdown of peripheral Y2 receptors results in increased respiratory exchange ratio and physical activity with no effect on lean or bone mass, but decreases energy expenditure without effecting body weight or food intake. These results suggest that peripheral Y2 receptor signaling is critical in the regulation of oxidative fuel selection and physical activity and protects against the diet-induced obesity. The lack of effects on bone mass seen in this model further indicates that bone mass is primarily controlled by non-peripheral Y2 receptors. This study provides evidence that novel drugs that target peripheral rather than central Y2 receptors could provide benefits for the treatment of obesity and glucose intolerance without adverse effects on lean and bone mass, with the additional benefit of avoiding side effects often associated with pharmaceuticals that act on the central nervous system.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Obesidade/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Tecido Adiposo/metabolismo , Animais , Composição Corporal , Peso Corporal , Osso e Ossos/metabolismo , Ingestão de Energia , Metabolismo Energético , Técnicas de Silenciamento de Genes , Intolerância à Glucose/metabolismo , Hiperfagia/metabolismo , Masculino , Camundongos , Modelos Animais , Atividade Motora , Obesidade/fisiopatologia , RNA/isolamento & purificação , RNA/metabolismo , Receptores de Neuropeptídeo Y/genética , Transdução de Sinais
18.
PLoS One ; 5(6): e11361, 2010 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-20613867

RESUMO

BACKGROUND: Y2 receptor signalling is known to be important in neuropeptide Y (NPY)-mediated effects on energy homeostasis and bone physiology. Y2 receptors are located post-synaptically as well as acting as auto receptors on NPY-expressing neurons, and the different roles of these two populations of Y2 receptors in the regulation of energy homeostasis and body composition are unclear. METHODOLOGY/PRINCIPAL FINDINGS: We thus generated two conditional knockout mouse models, Y2(lox/lox) and NPYCre/+;Y2(lox/lox), in which Y2 receptors can be selectively ablated either in the hypothalamus or specifically in hypothalamic NPY-producing neurons of adult mice. Specific deletion of hypothalamic Y2 receptors increases food intake and body weight compared to controls. Importantly, specific ablation of hypothalamic Y2 receptors on NPY-containing neurons results in a significantly greater adiposity in female but not male mice, accompanied by increased hepatic triglyceride levels, decreased expression of liver carnitine palmitoyltransferase (CPT1) and increased expression of muscle phosphorylated acetyl-CoA carboxylase (ACC). While food intake, body weight, femur length, bone mineral content, density and cortical bone volume and thickness are not significantly altered, trabecular bone volume and number were significantly increased by hypothalamic Y2 deletion on NPY-expressing neurons. Interestingly, in situ hybridisation reveals increased NPY and decreased proopiomelanocortin (POMC) mRNA expression in the arcuate nucleus of mice with hypothalamus-specific deletion of Y2 receptors in NPY neurons, consistent with a negative feedback mechanism between NPY expression and Y2 receptors on NPY-ergic neurons. CONCLUSIONS/SIGNIFICANCE: Taken together these data demonstrate the anti-obesogenic role of Y2 receptors in the brain, notably on NPY-ergic neurons, possibly via inhibition of NPY neurons and concomitant stimulation of POMC-expressing neurons in the arcuate nucleus of the hypothalamus, reducing lipogenic pathways in liver and/or skeletal muscle in females. These data also reveal as an anti-osteogenic effect of Y2 receptors on hypothalamic NPY-expressing neurons on trabecular but not on cortical bone.


Assuntos
Tecido Adiposo/fisiologia , Osso e Ossos/fisiologia , Homeostase , Receptores de Neuropeptídeo Y/fisiologia , Animais , Sequência de Bases , Primers do DNA , Feminino , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Receptores de Neuropeptídeo Y/genética
19.
PLoS One ; 4(12): e8415, 2009 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-20027231

RESUMO

Changes in whole body energy levels are closely linked to alterations in body weight and bone mass. Here, we show that hypothalamic signals contribute to the regulation of bone mass in a manner consistent with the central perception of energy status. Mice lacking neuropeptide Y (NPY), a well-known orexigenic factor whose hypothalamic expression is increased in fasting, have significantly increased bone mass in association with enhanced osteoblast activity and elevated expression of bone osteogenic transcription factors, Runx2 and Osterix. In contrast, wild type and NPY knockout (NPY (-/-)) mice in which NPY is specifically over expressed in the hypothalamus (AAV-NPY+) show a significant reduction in bone mass despite developing an obese phenotype. The AAV-NPY+ induced loss of bone mass is consistent with models known to mimic the central effects of fasting, which also show increased hypothalamic NPY levels. Thus these data indicate that, in addition to well characterized responses to body mass, skeletal tissue also responds to the perception of nutritional status by the hypothalamus independently of body weight. In addition, the reduction in bone mass by AAV NPY+ administration does not completely correct the high bone mass phenotype of NPY (-/-) mice, indicating the possibility that peripheral NPY may also be an important regulator of bone mass. Indeed, we demonstrate the expression of NPY specifically in osteoblasts. In conclusion, these data identifies NPY as a critical integrator of bone homeostatic signals; increasing bone mass during times of obesity when hypothalamic NPY expression levels are low and reducing bone formation to conserve energy under 'starving' conditions, when hypothalamic NPY expression levels are high.


Assuntos
Peso Corporal/fisiologia , Osso e Ossos/anatomia & histologia , Neuropeptídeo Y/deficiência , Adiposidade , Animais , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Feminino , Hipotálamo/citologia , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Knockout , Modelos Biológicos , Neuropeptídeo Y/metabolismo , Tamanho do Órgão , Osteogênese , Fenótipo , Transdução de Sinais
20.
PLoS One ; 4(12): e8488, 2009 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-20041129

RESUMO

BACKGROUND: Pancreatic polypeptide (PP) is a potent anti-obesity agent known to inhibit food intake in the absence of nausea, but the mechanism behind this process is unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we demonstrate that in response to i.p. injection of PP in wild type but not in Y4 receptor knockout mice, immunostaining for the neuronal activation marker c-Fos is induced specifically in neurons of the nucleus tractus solitarius and the area postrema in the brainstem, notably in cells also showing immunostaining for tyrosine hydroxylase. Importantly, strong c-Fos activation is also detected in the arcuate nucleus of the hypothalamus (ARC), particularly in neurons that co-express alpha melanocyte stimulating hormone (alpha-MSH), the anorexigenic product of the proopiomelanocortin (POMC) gene. Interestingly, other hypothalamic regions such as the paraventricular nucleus, the ventromedial nucleus and the lateral hypothalamic area also show c-Fos induction after PP injection. In addition to c-Fos activation, PP injection up-regulates POMC mRNA expression in the ARC as detected by in situ hybridization. These effects are a direct consequence of local Y4 signaling, since hypothalamus-specific conditional Y4 receptor knockout abolishes PP-induced ARC c-Fos activation and blocks the PP-induced increase in POMC mRNA expression. Additionally, the hypophagic effect of i.p. PP seen in wild type mice is completely absent in melanocortin 4 receptor knockout mice. CONCLUSIONS/SIGNIFICANCE: Taken together, these findings show that PP reduces food intake predominantly via stimulation of the anorexigenic alpha-MSH signaling pathway, and that this effect is mediated by direct action on local Y4 receptors within the ARC, highlighting a potential novel avenue for the treatment of obesity.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Comportamento Alimentar/efeitos dos fármacos , Melanocortinas/metabolismo , Polipeptídeo Pancreático/farmacologia , Receptores de Neuropeptídeo Y/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/enzimologia , Tronco Encefálico/citologia , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/metabolismo , Metabolismo Energético/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Masculino , Camundongos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Receptores de Neuropeptídeo Y/agonistas , Transdução de Sinais/efeitos dos fármacos , alfa-MSH/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...