Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Vis Comput Graph ; 28(4): 1758-1772, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33044933

RESUMO

We introduce a modeling tool which can evolve a set of 3D objects in a functionality-aware manner. Our goal is for the evolution to generate large and diverse sets of plausible 3D objects for data augmentation, constrained modeling, as well as open-ended exploration to possibly inspire new designs. Starting with an initial population of 3D objects belonging to one or more functional categories, we evolve the shapes through part recombination to produce generations of hybrids or crossbreeds between parents from the heterogeneous shape collection. Evolutionary selection of offsprings is guided both by a functional plausibility score derived from functionality analysis of shapes in the initial population and user preference, as in a design gallery. Since cross-category hybridization may result in offsprings not belonging to any of the known functional categories, we develop a means for functionality partial matching to evaluate functional plausibility on partial shapes. We show a variety of plausible hybrid shapes generated by our functionality-aware model evolution, which can complement existing datasets as training data and boost the performance of contemporary data-driven segmentation schemes, especially in challenging cases. Our tool supports constrained modeling, allowing users to restrict or steer the model evolution with functionality labels. At the same time, unexpected yet functional object prototypes can emerge during open-ended exploration owing to structure breaking when evolving a heterogeneous collection.

2.
IEEE Trans Pattern Anal Mach Intell ; 43(8): 2794-2808, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32086193

RESUMO

Reliable markerless motion tracking of people participating in a complex group activity from multiple moving cameras is challenging due to frequent occlusions, strong viewpoint and appearance variations, and asynchronous video streams. To solve this problem, reliable association of the same person across distant viewpoints and temporal instances is essential. We present a self-supervised framework to adapt a generic person appearance descriptor to the unlabeled videos by exploiting motion tracking, mutual exclusion constraints, and multi-view geometry. The adapted discriminative descriptor is used in a tracking-by-clustering formulation. We validate the effectiveness of our descriptor learning on WILDTRACK T. Chavdarova et al., "WILDTRACK: A multi-camera HD dataset for dense unscripted pedestrian detection," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 5030-5039. and three new complex social scenes captured by multiple cameras with up to 60 people "in the wild". We report significant improvement in association accuracy (up to 18 percent) and stable and coherent 3D human skeleton tracking (5 to 10 times) over the baseline. Using the reconstructed 3D skeletons, we cut the input videos into a multi-angle video where the image of a specified person is shown from the best visible front-facing camera. Our algorithm detects inter-human occlusion to determine the camera switching moment while still maintaining the flow of the action well. Website: http://www.cs.cmu.edu/~ILIM/projects/IM/Association4Tracking.


Assuntos
Algoritmos , Relações Interpessoais , Humanos , Movimento (Física)
3.
IEEE Trans Vis Comput Graph ; 23(8): 2003-2013, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27514042

RESUMO

Procedural modeling techniques can produce high quality visual content through complex rule sets. However, controlling the outputs of these techniques for design purposes is often notoriously difficult for users due to the large number of parameters involved in these rule sets and also their non-linear relationship to the resulting content. To circumvent this problem, we present a sketch-based approach to procedural modeling. Given an approximate and abstract hand-drawn 2D sketch provided by a user, our algorithm automatically computes a set of procedural model parameters, which in turn yield multiple, detailed output shapes that resemble the user's input sketch. The user can then select an output shape, or further modify the sketch to explore alternative ones. At the heart of our approach is a deep Convolutional Neural Network (CNN) that is trained to map sketches to procedural model parameters. The network is trained by large amounts of automatically generated synthetic line drawings. By using an intuitive medium, i.e., freehand sketching as input, users are set free from manually adjusting procedural model parameters, yet they are still able to create high quality content. We demonstrate the accuracy and efficacy of our method in a variety of procedural modeling scenarios including design of man-made and organic shapes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA