Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theory Biosci ; 141(1): 13-25, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35112309

RESUMO

A quaternary viscoelastic structure model with two characteristic times is presented to describe the viscoelastic properties of parallel-fibered collagen tissue. The comparison results of model prediction and experimental data of rabbit medial collateral ligaments show that the model could accurately describe viscoelastic behavior such as stress-relaxation, strain-strengthening and creep of bio-soft-tissue within a small scope of errors. To study the biomechanical mechanism of viscoelasticity that biological soft tissue shows, the influence of model parameters on viscoelastic behavior of bio-soft-tissue is analyzed and researched, which indicated that the major influential elements of stress-relaxation in bio-soft-tissue are elastic modulus, relaxation time and strain rate of proteoglycan-rich matrix. The influence of elastic modulus of collagen fibers on stress-relaxation is not significant. However, the nonlinearity of stress-strain curve and viscoelastic behavior of bio-soft-tissue mostly depends on recruitment and reorientation of collagen fibers under external loading.


Assuntos
Colágeno , Modelos Biológicos , Animais , Elasticidade , Coelhos , Estresse Mecânico , Viscosidade
2.
Nanomaterials (Basel) ; 11(6)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072587

RESUMO

A novel three-dimensional graphene-like networks material (3D-GLN) exhibiting the hierarchical porous structure was fabricated with a large-scale preparation method by employing an ion exchange resin as a carbon precursor. 3D-GLN was first studied as the effective microwave absorbing material. As indicated from the results of the electromagnetic parameter tests, and the minimum reflection loss (RL) of the 3D-GLN reached -34.75 dB at the frequency of 11.7 GHz. To enhance the absorption performance of the nonmagnetic 3D-GLN, the magnetic Fe3O4 nanoparticles were loaded on the surface of the 3D-GLN by using the hydrothermal method to develop the 3D-GLN/Fe3O4 hybrid. The hybrid exhibited the prominent absorbing properties. Under the matching thickness of 3.0 mm, the minimum RL value of hybrid reached -46.8 dB at 11.8 GHz. In addition, under the thickness range of 2.0-5.5 mm, the effective absorption bandwidth (RL < 10 dB) was 13.0 GHz, which covered part of the C-band and the entire X-band, as well as the entire Ku-band. The significant microwave absorption could be attributed to the special 3D network structure exhibited by the hybrid and the synergistic effect exerted by the graphene and the Fe3O4 nanoparticles. As revealed from the results, the 3D-GLN/Fe3O4 hybrid could be a novel microwave absorber with promising applications.

3.
J Theor Biol ; 365: 175-80, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25167791

RESUMO

A mathematical model based on the distribution of collagen fibers in ground substance is established to investigate epimysium of skeletal muscle. Under the condition of pinned boundary, incompressible soft biological tissues and the mixed ratio of composite materials, the macro-mechanical properties of the skeletal muscle epimysium are investigated by the proposed model, utilizing the principle of virtual work and the nonlinear theory of elasticity in this study. The effect of physical and geometrical parameters of skeletal muscle epimysium on the stress-strain relationship is also discussed in detail. The result of the investigation concurs with the experimental observations, which demonstrate the effectiveness and validity of the established model.


Assuntos
Modelos Biológicos , Músculo Esquelético/fisiologia , Estresse Fisiológico , Animais , Fenômenos Biomecânicos/fisiologia , Colágeno/metabolismo , Humanos
4.
Chem Commun (Camb) ; 50(82): 12356-9, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25184889

RESUMO

A novel mesoporous "shell-in-shell" structured nanocatalyst (@Pd/meso-TiO2/Pd@meso-SiO2) with large surface area, enhanced synergy, and improved catalytic performance is created for catalyzing Suzuki-Miyaura coupling and 4-nitrophenol reduction reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA