Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4672, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824151

RESUMO

The oxygen evolution reaction, which involves high overpotential and slow charge-transport kinetics, plays a critical role in determining the efficiency of solar-driven water splitting. The chiral-induced spin selectivity phenomenon has been utilized to reduce by-product production and hinder charge recombination. To fully exploit the spin polarization effect, we herein propose a dual spin-controlled perovskite photoelectrode. The three-dimensional (3D) perovskite serves as a light absorber while the two-dimensional (2D) chiral perovskite functions as a spin polarizer to align the spin states of charge carriers. Compared to other investigated chiral organic cations, R-/S-naphthyl ethylamine enable strong spin-orbital coupling due to strengthened π-π stacking interactions. The resulting naphthyl ethylamine-based chiral 2D/3D perovskite photoelectrodes achieved a high spin polarizability of 75%. Moreover, spin relaxation was prevented by employing a chiral spin-selective L-NiFeOOH catalyst, which enables the secondary spin alignment to promote the generation of triplet oxygen. This dual spin-controlled 2D/3D perovskite photoanode achieves a 13.17% of applied-bias photon-to-current efficiency. Here, after connecting the perovskite photocathode with L-NiFeOOH/S-naphthyl ethylamine 2D/3D photoanode in series, the resulting co-planar water-splitting device exhibited a solar-to-hydrogen efficiency of 12.55%.

2.
Nat Commun ; 15(1): 1495, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374159

RESUMO

Hydrogen production techniques based on solar-water splitting have emerged as carbon-free energy systems. Many researchers have developed highly efficient thin-film photoelectrochemical (PEC) devices made of low-cost and earth-abundant materials. However, solar water splitting systems suffer from short lifetimes due to catalyst instability that is attributed to both chemical dissolution and mechanical stress produced by hydrogen bubbles. A recent study found that the nanoporous hydrogel could prevent the structural degradation of the PEC devices. In this study, we investigate the protection mechanism of the hydrogel-based overlayer by engineering its porous structure using the cryogelation technique. Tests for cryogel overlayers with varied pore structures, such as disconnected micropores, interconnected micropores, and surface macropores, reveal that the hydrogen gas trapped in the cryogel protector reduce shear stress at the catalyst surface by providing bubble nucleation sites. The cryogelated overlayer effectively preserves the uniformly distributed platinum catalyst particles on the device surface for over 200 h. Our finding can help establish semi-permanent photoelectrochemical devices to realize a carbon-free society.

3.
Small ; 19(40): e2304166, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37282813

RESUMO

The sluggish and complex multi-step oxygen evolution reaction remains an obstacle to bias-free photoelectrochemical water-splitting systems. Several theoretical studies have suggested that spin-aligned intermediate radicals can significantly enhance the kinetic rates for oxygen generation. Herein, it is reported that the chirality-induced spin selectivity phenomena can become an impressive approach by adopting chiral 2D organic-inorganic hybrid perovskites as a spin-filtering layer on the photoanode. This chiral 2D perovskite-based water-splitting device achieves enhanced oxygen evolution performance with a reduced overpotential of 0.14 V, high fill factor, and 230% increased photocurrent compared to a device without a spin-filtering layer. Moreover, combined with a superhydrophobic patterning strategy, this device realizes excellent operational stability by sustaining ≈90% of the initial photocurrent, even after 10 h.

4.
Adv Sci (Weinh) ; 10(6): e2206286, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36646498

RESUMO

To realize practical solar hydrogen production, a low-cost photocathode with high photocurrent density and onset potential should be developed. Herein, an efficient and stable overall photoelectrochemical tandem cell is developed with a Cu3 BiS3 -based photocathode. By exploiting the crystallographic similarities between Bi2 S3 and Cu3 BiS3 , a one-step solution process with two sulfur sources is used to prepare the Bi2 S3 -Cu3 BiS3 blended interlayer. The elongated Bi2 S3 -Cu3 BiS3 mixed-phase 1D nanorods atop a planar Cu3 BiS3 film enable a high photocurrent density of 7.8 mA cm-2 at 0 V versus the reversible hydrogen electrode, with an onset potential of 0.9 VRHE . The increased performance over the single-phase Cu3 BiS3 thin-film photocathode is attributed to the enhanced light scattering and charge collection through the unique 1D nanostructure, improved electrical conductivity, and better band alignment with the n-type CdS layer. A solar-to-hydrogen efficiency of 2.33% is achieved under unassisted conditions with a state-of-the-art Mo:BiVO4 photoanode, with excellent stability exceeding 21 h.

5.
J Am Chem Soc ; 144(35): 16020-16033, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36036662

RESUMO

Chiral perovskites have emerged as promising candidates for polarization-sensing materials. Despite their excellent chiroptical properties, the nature of their multiple-quantum-well structures is a critical hurdle for polarization-based and spintronic applications. Furthermore, as the origin of chiroptical activity in chiral perovskites is still illusive, the strategy for simultaneously enhancing the chiroptical activity and charge transport has not yet been reported. Here, we demonstrated that incorporating a Lewis base into the lattice can effectively tune the chiroptical response and electrical properties of chiral perovskites. Through solid-state nuclear magnetic resonance spectroscopic measurements and theoretical calculations, it was demonstrated that the material property manipulation resulted from the change in the time-averaged structure induced by the Lewis base. Finally, as a preliminary proof of concept, a vertical-type circularly polarized light photodetector based on chiral perovskites was developed, exhibiting an outstanding performance with a distinguishability of 0.27 and a responsivity of 0.43 A W-1.

6.
Adv Sci (Weinh) ; 8(21): e2102458, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34494726

RESUMO

To achieve a high solar-to-hydrogen (STH) conversion efficiency, delicate strategies toward high photocurrent together with sufficient onset potential should be developed. Herein, an SnS semiconductor is reported as a high-performance photocathode. Use of proper sulfur precursor having weak dipole moment allows to obtain high-quality dense SnS nanoplates with enlarged favorable crystallographic facet, while suppressing inevitable anisotropic growth. Furthermore, the introducing Ga2 O3 layer between SnS and TiO2 in SnS photocathodes efficiently improves the charge transport kinetics without charge trapping. The SnS photocathode reveals the highest photocurrent density of 28 mA cm-2 at 0 V versus the reversible hydrogen electrode. Overall solar water splitting is demonstrated for the first time by combining the optimized SnS photocathode with a Mo:BiVO4 photoanode, achieving a STH efficiency of 1.7% and long-term stability of 24 h. High performance and low-cost SnS photocathode represent a promising new material in the field of photoelectrochemical solar water splitting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...