Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Yonsei Med J ; 64(9): 531-540, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37634629

RESUMO

PURPOSE: For precision medicine, exploration and monitoring of molecular biomarkers are essential. However, in advanced gastric cancer (GC) with visceral lesions, an invasive procedure cannot be performed repeatedly for the follow-up of molecular biomarkers. MATERIALS AND METHODS: To verify the clinical implication of serial liquid biopsies targeting circulating tumor DNA (ctDNA) on treatment response, we conducted targeted deep sequencing for serially collected ctDNA of 15 HER2-positive metastatic GC patients treated with anti-PD-1 inhibitor in combination with standard systemic treatment. RESULTS: In the baseline ctDNAs, 14 patients (93%) harbored more than one genetic alteration. A number of mutations in well-known cancer-related genes, such as KRAS and PIK3CA, were identified. Copy number alterations were identified in eight GCs (53.3%), and amplification of the ERBB2 gene (6/15, 40.0%) was the most recurrent. When we calculated the mean variant allele frequency (VAF) of mutations in each ctDNA as the molecular tumor burden index (mTBI), the mTBI trend was largely consistent with the VAF profiles in both responder and non-responder groups. Notably, in the longitudinal analysis of ctDNA, mTBI provided 2-42 weeks (mean 13.4 weeks) lead time in the detection of disease progression compared to conventional follow-up with CT imaging. CONCLUSION: Our data indicate that the serial genetic alteration profiling of ctDNA is feasible to predict treatment response in HER2-positive GC patients in a minimally invasive manner. Practically, ctDNA profiles are useful not only for the molecular diagnosis of GC but also for the selection of GC patients with poor prognosis for systemic treatment (ClinicalTrials.gov identifier: NCT02901301).


Assuntos
DNA Tumoral Circulante , Neoplasias Gástricas , Humanos , Administração Cutânea , DNA Tumoral Circulante/genética , Inibidores de Checkpoint Imunológico , Biópsia Líquida , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética
2.
Eur J Pharmacol ; 882: 173256, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32531213

RESUMO

GPR139 is a G-protein coupled receptor expressed in circumventricular regions of the habenula and septum. Amino acids L-tryptophan and L-phenylalanine have been shown to activate GPR139 at physiologically relevant concentrations. The aim of the present study was to investigate the role of GPR139 on sleep modulation using pharmacological and genetic (GPR139 knockout mice, KO) rodent models. To evaluate the effects of GPR139 pharmacological activation on sleep, rats were orally dosed with the selective GPR139 agonist JNJ-63533054 (3-30 mg/kg). When acutely administered at the beginning of the light phase, the GPR139 agonist dose-dependently reduced non-rapid eye movement (NREM) latency and increased NREM sleep duration without altering rapid eye movement (REM) sleep. This effect progressively dissipated upon 7-day repeated dosing, suggesting functional desensitization. Under baseline conditions, GPR139 KO mice spent less time in REM sleep compared to their wild type littermates during the dark phase, whereas NREM sleep was not altered. Under conditions of pharmacologically enhanced monoamine endogenous tone, GPR139 KO mice showed a blunted response to citalopram or fluoxetine induced REM sleep suppression and an attenuated response to the wake promoting effect of amphetamine. These findings indicate an emerging role of GPR139 in the modulation of sleep states.


Assuntos
Proteínas do Tecido Nervoso , Receptores Acoplados a Proteínas G , Sono , Animais , Citalopram/farmacologia , Dextroanfetamina/farmacologia , Dopamina/farmacologia , Fluoxetina/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/genética , Norepinefrina/farmacologia , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Serotonina/farmacologia , Sono/efeitos dos fármacos , Sono/genética
3.
J Pharmacol Exp Ther ; 372(3): 339-353, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31818916

RESUMO

The serine hydrolase monoacylglycerol lipase (MAGL) is the rate-limiting enzyme responsible for the degradation of the endocannabinoid 2-arachidonoylglycerol (2-AG) into arachidonic acid and glycerol. Inhibition of 2-AG degradation leads to elevation of 2-AG, the most abundant endogenous agonist of the cannabinoid receptors (CBs) CB1 and CB2. Activation of these receptors has demonstrated beneficial effects on mood, appetite, pain, and inflammation. Therefore, MAGL inhibitors have the potential to produce therapeutic effects in a vast array of complex human diseases. The present report describes the pharmacologic characterization of [1-(4-fluorophenyl)indol-5-yl]-[3-[4-(thiazole-2-carbonyl)piperazin-1-yl]azetidin-1-yl]methanone (JNJ-42226314), a reversible and highly selective MAGL inhibitor. JNJ-42226314 inhibits MAGL in a competitive mode with respect to the 2-AG substrate. In rodent brain, the compound time- and dose-dependently bound to MAGL, indirectly led to CB1 occupancy by raising 2-AG levels, and raised norepinephrine levels in cortex. In vivo, the compound exhibited antinociceptive efficacy in both the rat complete Freund's adjuvant-induced radiant heat hypersensitivity and chronic constriction injury-induced cold hypersensitivity models of inflammatory and neuropathic pain, respectively. Though 30 mg/kg induced hippocampal synaptic depression, altered sleep onset, and decreased electroencephalogram gamma power, 3 mg/kg still provided approximately 80% enzyme occupancy, significantly increased 2-AG and norepinephrine levels, and produced neuropathic antinociception without synaptic depression or decreased gamma power. Thus, it is anticipated that the profile exhibited by this compound will allow for precise modulation of 2-AG levels in vivo, supporting potential therapeutic application in several central nervous system disorders. SIGNIFICANCE STATEMENT: Potentiation of endocannabinoid signaling activity via inhibition of the serine hydrolase monoacylglycerol lipase (MAGL) is an appealing strategy in the development of treatments for several disorders, including ones related to mood, pain, and inflammation. [1-(4-Fluorophenyl)indol-5-yl]-[3-[4-(thiazole-2-carbonyl)piperazin-1-yl]azetidin-1-yl]methanone is presented in this report to be a novel, potent, selective, and reversible noncovalent MAGL inhibitor that demonstrates dose-dependent enhancement of the major endocannabinoid 2-arachidonoylglycerol as well as efficacy in models of neuropathic and inflammatory pain.


Assuntos
Encéfalo/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Monoacilglicerol Lipases/antagonistas & inibidores , Piperazinas/farmacologia , Animais , Ligação Competitiva , Encéfalo/enzimologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/sangue , Escherichia coli/enzimologia , Escherichia coli/genética , Células HeLa , Humanos , Cinética , Leucócitos Mononucleares/enzimologia , Masculino , Camundongos Endogâmicos C57BL , Estrutura Molecular , Monoacilglicerol Lipases/genética , Dor/tratamento farmacológico , Piperazinas/sangue , Ligação Proteica , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/agonistas , Sono REM/efeitos dos fármacos , Especificidade por Substrato
4.
Front Pharmacol ; 8: 357, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28649201

RESUMO

Orexin neurons originating in the perifornical and lateral hypothalamic area are highly reactive to anxiogenic stimuli and have strong projections to anxiety and panic-associated circuitry. Recent studies support a role for the orexin system and in particular the orexin 1 receptor (OX1R) in coordinating an integrative stress response. However, no selective OX1R antagonist has been systematically tested in two preclinical models of using panicogenic stimuli that induce panic attack in the majority of people with panic disorder, namely an acute hypercapnia-panic provocation model and a model involving chronic inhibition of GABA synthesis in the perifornical hypothalamic area followed by intravenous sodium lactate infusion. Here we report on a novel brain penetrant, selective and high affinity OX1R antagonist JNJ-54717793 (1S,2R,4R)-7-([(3-fluoro-2-pyrimidin-2-ylphenyl)carbonyl]-N-[5-(trifluoromethyl)pyrazin-2-yl]-7-azabicyclo[2.2.1]heptan-2-amine). JNJ-54717793 is a high affinity/potent OX1R antagonist and has an excellent selectivity profile including 50 fold versus the OX2R. Ex vivo receptor binding studies demonstrated that after oral administration JNJ-54717793 crossed the blood brain barrier and occupied OX1Rs in the rat brain. While JNJ-54717793 had minimal effect on spontaneous sleep in rats and in wild-type mice, its administration in OX2R knockout mice, selectively promoted rapid eye movement sleep, demonstrating target engagement and specific OX1R blockade. JNJ-54717793 attenuated CO2 and sodium lactate induced panic-like behaviors and cardiovascular responses without altering baseline locomotor or autonomic activity. These data confirm that selective OX1R antagonism may represent a novel approach of treating anxiety disorders, with no apparent sedative effects.

5.
Front Behav Neurosci ; 11: 83, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28533747

RESUMO

Orexins peptides exert a prominent role in arousal-related processes including stress responding, by activating orexin-1 (OX1R) and orexin-2 (OX2R) receptors located widely throughout the brain. Stress or orexin administration stimulates hyperarousal, adrenocorticotropic hormone (ACTH) and corticosterone release, and selective OX1R blockade can attenuate several stress-induced behavioral and cardiovascular responses but not the hypothalamic-pituitary-adrenal (HPA) axis activation. As opposed to OX1R, OX2R are preferentially expressed in the paraventricular hypothalamic nucleus which is involved in the HPA axis regulation. In the present study, we investigated the effects of a psychological stress elicited by cage exchange (CE) on ACTH release in two murine models (genetic and pharmacological) of selective OX2R inhibition. CE-induced stress produced a significant increase in ACTH serum levels. Mice lacking the OX2R exhibited a blunted stress response. Stress-induced ACTH release was absent in mice pre-treated with the selective OX2R antagonist JNJ-42847922 (30 mg/kg po), whereas pre-treatment with the dual OX1/2R antagonist SB-649868 (30 mg/kg po) only partially attenuated the increase of ACTH. To assess whether the intrinsic and distinct sleep-promoting properties of each antagonist could account for the differential stress response, a separate group of mice implanted with electrodes for standard sleep recording were orally dosed with JNJ-42847922 or SB-649868 during the light phase. While both compounds reduced the latency to non-rapid eye movement (NREM) sleep without affecting its duration, a prevalent REM-sleep promoting effect was observed only in mice treated with the dual OX1/2R antagonist. These data indicate that in a psychological stress model, genetic or pharmacological inhibition of OX2R markedly attenuated stress-induced ACTH secretion, as a separately mediated effect from the NREM sleep induction of OX2R antagonism.

6.
J Pharmacol Exp Ther ; 357(2): 394-414, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26989142

RESUMO

Members of the α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionic acid (AMPA) subtype of ionotropic glutamate receptors mediate the majority of fast synaptic transmission within the mammalian brain and spinal cord, representing attractive targets for therapeutic intervention. Here, we describe novel AMPA receptor modulators that require the presence of the accessory protein CACNG8, also known as transmembrane AMPA receptor regulatory protein γ8 (TARP-γ8). Using calcium flux, radioligand binding, and electrophysiological assays of wild-type and mutant forms of TARP-γ8, we demonstrate that these compounds possess a novel mechanism of action consistent with a partial disruption of the interaction between the TARP and the pore-forming subunit of the channel. One of the molecules, 5-[2-chloro-6-(trifluoromethoxy)phenyl]-1,3-dihydrobenzimidazol-2-one (JNJ-55511118), had excellent pharmacokinetic properties and achieved high receptor occupancy following oral administration. This molecule showed strong, dose-dependent inhibition of neurotransmission within the hippocampus, and a strong anticonvulsant effect. At high levels of receptor occupancy in rodent in vivo models, JNJ-55511118 showed a strong reduction in certain bands on electroencephalogram, transient hyperlocomotion, no motor impairment on rotarod, and a mild impairment in learning and memory. JNJ-55511118 is a novel tool for reversible AMPA receptor inhibition, particularly within the hippocampus, with potential therapeutic utility as an anticonvulsant or neuroprotectant. The existence of a molecule with this mechanism of action demonstrates the possibility of pharmacological targeting of accessory proteins, increasing the potential number of druggable targets.


Assuntos
Benzimidazóis/uso terapêutico , Canais de Cálcio/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Receptores de AMPA/efeitos dos fármacos , Animais , Canais de Cálcio/genética , Sinalização do Cálcio/efeitos dos fármacos , Desenho de Fármacos , Eletroencefalografia/efeitos dos fármacos , Células HEK293 , Humanos , Aprendizagem/efeitos dos fármacos , Memória/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Mutação/genética , Neurônios/efeitos dos fármacos , Equilíbrio Postural/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores de AMPA/genética
7.
Mol Pharmacol ; 88(5): 911-25, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26349500

RESUMO

GPR139 is an orphan G-protein-coupled receptor expressed in the central nervous system. To identify its physiologic ligand, we measured GPR139 receptor activity from recombinant cells after treatment with amino acids, orphan ligands, serum, and tissue extracts. GPR139 activity was measured using guanosine 5'-O-(3-[(35)S]thio)-triphosphate binding, calcium mobilization, and extracellular signal-regulated kinases phosphorylation assays. Amino acids L-tryptophan (L-Trp) and L-phenylalanine (L-Phe) activated GPR139, with EC50 values in the 30- to 300-µM range, consistent with the physiologic concentrations of L-Trp and L-Phe in tissues. Chromatography of rat brain, rat serum, and human serum extracts revealed two peaks of GPR139 activity, which corresponded to the elution peaks of L-Trp and L-Phe. With the purpose of identifying novel tools to study GPR139 function, a high-throughput screening campaign led to the identification of a selective small-molecule agonist [JNJ-63533054, (S)-3-chloro-N-(2-oxo-2-((1-phenylethyl)amino)ethyl) benzamide]. The tritium-labeled JNJ-63533054 bound to cell membranes expressing GPR139 and could be specifically displaced by L-Trp and L-Phe. Sequence alignment revealed that GPR139 is highly conserved across species, and RNA sequencing studies of rat and human tissues indicated its exclusive expression in the brain and pituitary gland. Immunohistochemical analysis showed specific expression of the receptor in circumventricular regions of the habenula and septum in mice. Together, these findings suggest that L-Trp and L-Phe are candidate physiologic ligands for GPR139, and we hypothesize that this receptor may act as a sensor to detect dynamic changes of L-Trp and L-Phe in the brain.


Assuntos
Habenula/química , Proteínas do Tecido Nervoso/fisiologia , Fenilalanina/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Septo do Cérebro/química , Triptofano/fisiologia , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Masculino , Camundongos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/efeitos dos fármacos , Fenilalanina/sangue , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/análise , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Triptofano/sangue
8.
J Pharmacol Exp Ther ; 354(3): 471-82, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26177655

RESUMO

Dual orexin receptor antagonists have been shown to promote sleep in various species, including humans. Emerging research indicates that selective orexin-2 receptor (OX2R) antagonists may offer specificity and a more adequate sleep profile by preserving normal sleep architecture. Here, we characterized JNJ-42847922 ([5-(4,6-dimethyl-pyrimidin-2-yl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-(2-fluoro-6-[1,2,3]triazol-2-yl-phenyl)-methanone), a high-affinity/potent OX2R antagonist. JNJ-42847922 had an approximate 2-log selectivity ratio versus the human orexin-1 receptor. Ex vivo receptor binding studies demonstrated that JNJ-42847922 quickly occupied OX2R binding sites in the rat brain after oral administration and rapidly cleared from the brain. In rats, single oral administration of JNJ-42847922 (3-30 mg/kg) during the light phase dose dependently reduced the latency to non-rapid eye movement (NREM) sleep and prolonged NREM sleep time in the first 2 hours, whereas REM sleep was minimally affected. The reduced sleep onset and increased sleep duration were maintained upon 7-day repeated dosing (30 mg/kg) with JNJ-42847922, then all sleep parameters returned to baseline levels following discontinuation. Although the compound promoted sleep in wild-type mice, it had no effect in OX2R knockout mice, consistent with a specific OX2R-mediated sleep response. JNJ-42847922 did not increase dopamine release in rat nucleus accumbens or produce place preference in mice after subchronic conditioning, indicating that the compound lacks intrinsic motivational properties in contrast to zolpidem. In a single ascending dose study conducted in healthy subjects, JNJ-42847922 increased somnolence and displayed a favorable pharmacokinetic and safety profile for a sedative/hypnotic, thus emerging as a promising candidate for further clinical development for the treatment of insomnia.


Assuntos
Antagonistas dos Receptores de Orexina , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Sono/efeitos dos fármacos , Animais , Sítios de Ligação/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células CHO , Linhagem Celular , Cricetulus , Dopamina/metabolismo , Células HEK293 , Humanos , Hipnóticos e Sedativos/farmacologia , Masculino , Camundongos , Camundongos Knockout , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Distúrbios do Início e da Manutenção do Sono/metabolismo , Fases do Sono/efeitos dos fármacos , Sono REM/efeitos dos fármacos , Zolpidem
9.
J Med Chem ; 58(14): 5620-36, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26087021

RESUMO

The preclinical characterization of novel octahydropyrrolo[3,4-c]pyrroles that are potent and selective orexin-2 antagonists is described. Optimization of physicochemical and DMPK properties led to the discovery of compounds with tissue distribution and duration of action suitable for evaluation in the treatment of primary insomnia. These selective orexin-2 antagonists are proven to promote sleep in rats, and this work ultimately led to the identification of a compound that progressed into human clinical trials for the treatment of primary insomnia. The synthesis, SAR, and optimization of the pharmacokinetic properties of this series of compounds as well as the identification of the clinical candidate, JNJ-42847922 (34), are described herein.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Neuropeptídeos/antagonistas & inibidores , Pirróis/química , Pirróis/farmacologia , Animais , Ensaios Clínicos como Assunto , Cães , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Neuropeptídeos/metabolismo , Receptores de Orexina/metabolismo , Orexinas , Pirróis/farmacocinética , Pirróis/uso terapêutico , Ratos , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Relação Estrutura-Atividade , Especificidade por Substrato
10.
J Pharmacol Exp Ther ; 352(3): 590-601, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25583879

RESUMO

Orexins (OXs) are peptides produced by perifornical (PeF) and lateral hypothalamic neurons that exert a prominent role in arousal-related processes, including stress. A critical role for the orexin-1 receptor (OX1R) in complex emotional behavior is emerging, such as overactivation of the OX1R pathway being associated with panic or anxiety states. Here we characterize a brain-penetrant, selective, and high-affinity OX1R antagonist, compound 56 [N-({3-[(3-ethoxy-6-methylpyridin-2-yl)carbonyl]-3-azabicyclo[4.1.0]hept-4-yl}methyl)-5-(trifluoromethyl)pyrimidin-2-amine]. Ex vivo receptor binding studies demonstrated that, after subcutaneous administration, compound 56 crossed the blood-brain barrier and occupied OX1Rs in the rat brain at lower doses than standard OX1R antagonists GSK-1059865 [5-bromo-N-({1-[(3-fluoro-2-methoxyphenyl)carbonyl]-5-methylpiperidin-2-yl}methyl)pyridin-2-amine], SB-334867 [1-(2-methyl-1,3-benzoxazol-6-yl)-3-(1,5-naphthyridin-4-yl)urea], and SB-408124 [1-(6,8-difluoro-2-methylquinolin-4-yl)-3-[4-(dimethylamino)phenyl]urea]. Although compound 56 did not alter spontaneous sleep in rats and in wild-type mice, its administration in orexin-2 receptor knockout mice selectively promoted rapid eye movement sleep, demonstrating target engagement and specific OX1R blockade. In a rat model of psychological stress induced by cage exchange, the OX1R antagonist prevented the prolongation of sleep onset without affecting sleep duration. In a rat model of panic vulnerability (involving disinhibition of the PeF OX region) to threatening internal state changes (i.e., intravenous sodium lactate infusion), compound 56 attenuated sodium lactate-induced panic-like behaviors and cardiovascular responses without altering baseline locomotor or autonomic activity. In conclusion, OX1R antagonism represents a novel therapeutic strategy for the treatment of various psychiatric disorders associated with stress or hyperarousal states.


Assuntos
Aminopiridinas/uso terapêutico , Nível de Alerta/fisiologia , Antagonistas dos Receptores de Orexina , Receptores de Orexina/metabolismo , Piperidinas/uso terapêutico , Estresse Psicológico/metabolismo , Estresse Psicológico/prevenção & controle , Aminopiridinas/metabolismo , Aminopiridinas/farmacologia , Animais , Nível de Alerta/efeitos dos fármacos , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Hipnóticos e Sedativos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Piperidinas/metabolismo , Piperidinas/farmacologia , Ligação Proteica/fisiologia , Ratos , Ratos Sprague-Dawley
11.
PLoS One ; 9(11): e112068, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25372144

RESUMO

Therapeutic drugs for cognitive and psychiatric disorders are often characterized by their molecular mechanism of action. Here we demonstrate a new approach to elucidate drug action on large-scale neuronal activity by tracking somatic calcium dynamics in hundreds of CA1 hippocampal neurons of pharmacologically manipulated behaving mice. We used an adeno-associated viral vector to express the calcium sensor GCaMP3 in CA1 pyramidal cells under control of the CaMKII promoter and a miniaturized microscope to observe cellular dynamics. We visualized these dynamics with and without a systemic administration of Zolpidem, a GABAA agonist that is the most commonly prescribed drug for the treatment of insomnia in the United States. Despite growing concerns about the potential adverse effects of Zolpidem on memory and cognition, it remained unclear whether Zolpidem alters neuronal activity in the hippocampus, a brain area critical for cognition and memory. Zolpidem, when delivered at a dose known to induce and prolong sleep, strongly suppressed CA1 calcium signaling. The rate of calcium transients after Zolpidem administration was significantly lower compared to vehicle treatment. To factor out the contribution of changes in locomotor or physiological conditions following Zolpidem treatment, we compared the cellular activity across comparable epochs matched by locomotor and physiological assessments. This analysis revealed significantly depressive effects of Zolpidem regardless of the animal's state. Individual hippocampal CA1 pyramidal cells differed in their responses to Zolpidem with the majority (∼ 65%) significantly decreasing the rate of calcium transients, and a small subset (3%) showing an unexpected and significant increase. By linking molecular mechanisms with the dynamics of neural circuitry and behavioral states, this approach has the potential to contribute substantially to the development of new therapeutics for the treatment of CNS disorders.


Assuntos
Região CA1 Hipocampal , Cálcio/metabolismo , Agonistas de Receptores de GABA-A/farmacologia , Imagem Molecular/métodos , Imagem Óptica/métodos , Células Piramidais , Piridinas/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/metabolismo , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Camundongos , Microscopia de Fluorescência/métodos , Células Piramidais/citologia , Células Piramidais/metabolismo , Zolpidem
12.
Front Neurosci ; 8: 28, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24592208

RESUMO

In accordance with the prominent role of orexins in the maintenance of wakefulness via activation of orexin-1 (OX1R) and orexin-2 (OX2R) receptors, various dual OX1/2R antagonists have been shown to promote sleep in animals and humans. While selective blockade of OX2R seems to be sufficient to initiate and prolong sleep, the beneficial effect of additional inhibition of OX1R remains controversial. The relative contribution of OX1R and OX2R to the sleep effects induced by a dual OX1/2R antagonist was further investigated in the rat, and specifically on rapid eye movement (REM) sleep since a deficiency of the orexin system is associated with narcolepsy/cataplexy based on clinical and pre-clinical data. As expected, the dual OX1/2R antagonist SB-649868 was effective in promoting non-REM (NREM) and REM sleep following oral dosing (10 and 30 mg/kg) at the onset of the dark phase. However, a disruption of REM sleep was evidenced by a more pronounced reduction in the onset of REM as compared to NREM sleep, a marked enhancement of the REM/total sleep ratio, and the occurrence of a few episodes of direct wake to REM sleep transitions (REM intrusion). When administered subcutaneously, the OX2R antagonist JNJ-10397049 (10 mg/kg) increased NREM duration whereas the OX1R antagonist GSK-1059865 (10 mg/kg) did not alter sleep. REM sleep was not affected either by OX2R or OX1R blockade alone, but administration of the OX1R antagonist in combination with the OX2R antagonist induced a significant reduction in REM sleep latency and an increase in REM sleep duration at the expense of the time spent in NREM sleep. These results indicate that additional blockade of OX1R to OX2R antagonism elicits a dysregulation of REM sleep by shifting the balance in favor of REM sleep at the expense of NREM sleep that may increase the risk of adverse events. Translation of this hypothesis remains to be tested in the clinic.

13.
Front Behav Neurosci ; 8: 453, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25642174

RESUMO

Recent reports have illustrated a reciprocal relationship between circadian rhythm disruption and mood disorders. The 5-HT7 receptor may provide a crucial link between the two sides of this equation since the receptor plays a critical role in sleep, depression, and circadian rhythm regulation. To further define the role of the 5-HT7 receptor as a potential pharmacotherapy to correct circadian rhythm disruptions, the current study utilized the selective 5-HT7 antagonist JNJ-18038683 (10 mg/kg) in three different circadian paradigms. While JNJ-18038683 was ineffective at phase shifting the onset of wheel running activity in mice when administered at different circadian time (CT) points across the circadian cycle, pretreatment with JNJ-18038683 blocked non-photic phase advance (CT6) induced by the 5-HT1A/7 receptor agonist 8-OH-DPAT (3 mg/kg). Since light induced phase shifts in mammals are partially mediated via the modulation of the serotonergic system, we determined if JNJ-18038683 altered phase shifts induced by a light pulse at times known to phase delay (CT15) or advance (CT22) wheel running activity in free running mice. Light exposure resulted in a robust shift in the onset of activity in vehicle treated animals at both times tested. Administration of JNJ-18038683 significantly attenuated the light induced phase delay and completely blocked the phase advance. The current study demonstrates that pharmacological blockade of the 5-HT7 receptor by JNJ-18038683 blunts both non-photic and photic phase shifts of circadian wheel running activity in mice. These findings highlight the importance of the 5-HT7 receptor in modulating circadian rhythms. Due to the opposite modulating effects of light resetting between diurnal and nocturnal species, pharmacotherapy targeting the 5-HT7 receptor in conjunction with bright light therapy may prove therapeutically beneficial by correcting the desynchronization of internal rhythms observed in depressed individuals.

14.
Dev Reprod ; 18(4): 213-24, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25949191

RESUMO

Previously we have shown that human abdominal adipose derived-stem cells (ADSCs) could aggregate during the high-density culture in the presence of human serum (HS). In the present study, we observed that human cord blood serum (CBS) and follicular fluid (HFF) also induced aggregation. Similarly, porcine serum could induce aggregation whereas bovine and sheep sera induced little aggregation. qRT-PCR analyses demonstrated that, compared to FBS-cultured ADSCs, HScultured cells exhibited higher level of mRNA expression of CLDN3, -6, -7, -15, and -16 genes among the tight junction proteins. ADSCs examined at the time of aggregation by culture with HS, BSA, HFF, CBS, or porcine serum showed significantly higher level of mRNA expression of JAM2 among JAM family members. In contrast, cells cultured in FBS, bovine serum or sheep serum, showed lower level of JAM2 expression. Immunocytochemical analyses demonstrated that the aggregates of HS-cultured cells (HS-Agg) showed intense staining against the anti-JAM2 antibody whereas neither non-aggregated cells (HS-Ex) nor FBS-cultured cells exhibited weak staining. Western blot results showed that HS-Agg expressed JAM2 protein more prominently than HS-Ex and FBS-cultured cells, both of latter reveled weaker intensity. These results suggest that the aggregation property of ADSCs during high-density culture would be dependent on the specific components of serum, and that JAM2 molecule could play a role in the animal sera-induced aggregation in vitro.

15.
Dev Reprod ; 17(4): 409-20, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25949157

RESUMO

Human serum (HS) has been reported to induce aggregation of human eyelid adipose-derived stem cells (HEACs) during high-density culture in vitro. The present study focused on the role of cell adhesion molecules and gelatinases during HS-induced aggregation of HEACs. HS-induced aggregation occurred between 9-15 days of culture. Cells aggregated by HS medium (HS-agg) showed stronger expression of α2, α2B, αX, and CEACAM1 genes compared to non-aggregated cells in HS medium (HS-ex) or in control FBS-cultured cells. HS-agg were distinctly labeled with antibodies against α2, α2B, and αX proteins. Western blot results demonstrated that the two integrin proteins were greatly expressed in HS-agg compared to HS-ex and control FBS-cultured cells. Treatment of HEACs with anti-integrin α2 antibody during culture in HS medium delayed aggregation formation. HS-agg exhibited strong expression of MMP1 and MMP9 compared to HS-ex or FBS-cultured cells. Conditioned media from HS-culture showed remarkable increase of MMP9 gelatinolytic activity in comparison to those from FBS-culture. However, there was no change of TIMP mRNA expression in relation to the HS-induced aggregation. Based on these results, it is suggested that integrin α2, α2B, and αX, and MMP9 might play an important role in the HS-induced aggregation of HEACs.

16.
Clin Exp Reprod Med ; 39(1): 15-21, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22563546

RESUMO

OBJECTIVE: Tributyltin (TBT), an endocrine disrupting chemical, has been reported to decrease ovarian function by causing apoptosis in the ovary, but the mechanism is not fully understood. Therefore, we examined whether TBT increases the expression of adipogenesis-related genes in the ovary and the increased expression of these genes is associated with apoptosis induction. METHODS: Three-week-old Sprague-Dawley rats were orally administered TBT (1 or 10 mg/kg body weight) or sesame oil as a control for 7 days. The ovaries were obtained and weighed on day 8, and then they were fixed for terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) or frozen for RNA extraction. Using the total RNA of the ovaries, adipogenesis- and apoptosis-related genes were analyzed by real-time polymerase chain reaction (PCR). RESULTS: The ovarian weight was significantly decreased in rats administered 10 mg/kg TBT compared to that in control rats. As determined by the TUNEL assay, the number of apoptotic follicles in ovary was significantly increased in rats administered 10 mg/kg TBT. The real-time PCR results showed that the expression of adipogenesis-related genes such as PPARγ, aP2, CD36, and PEPCK was increased after TBT administration. In addition, apoptosis-related genes such as TNFα and TNFR1 were expressed more in the TBT-administered rats compared with the control rats. CONCLUSION: The present study demonstrates that TBT induces the expression of adipogenesis- and apoptosis-related genes in the ovary leading to apoptosis in the ovarian follicles. These results suggest that the increased expression of adipogenesis-related genes in the ovary by TBT exposure might induce apoptosis resulting in a loss of ovarian function.

17.
Cancer Chemother Pharmacol ; 69(3): 577-90, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21913035

RESUMO

PURPOSE: DT-IgG is a fully humanized dual-target therapeutic antibody being developed to simultaneously target epidermal growth factor receptor (EGFR) and vascular endothelial growth factor (VEGF), important signaling molecules for tumor growth. The antitumor pharmacodynamics (PD) of DT-IgG was studied in nude mice bearing human tumor xenografts with different EGFR and VEGF expressions and K-ras oncogene status and compared with bevacizumab, cetuximab and bevacizumab + cetuximab. METHODS: Mice bearing human oral squamous cell carcinoma (Tu212), lung adenocarcinoma (A549), or colon cancer (GEO) subcutaneous xenografts were administered with the antibodies intraperitoneally (i.p.), and tumor volumes were measured versus time. Nonlinear mixed effects modeling (NONMEM) was used to study drug potencies (IC(50)) and variations in tumor growth. RESULTS: The PD models adequately described tumor responses for the antibody dose regimens. In vivo IC(50) values varied with EGFR and K-ras status. DT-IgG had a similar serum t (1/2) as cetuximab (~1.7 vs. 1.5 day), was more rapid than bevacizumab (~6 day), and had the largest apparent distribution volume (DT-IgG > cetuximab > bevacizumab). The efficacy of DT-IgG was comparable to bevacizumab despite lower serum concentrations, but was less than bevacizumab + cetuximab. CONCLUSIONS: A lower IC(50) of DT-IgG partially compensated for lower serum concentrations than bevacizumab and cetuximab, but may require higher doses for comparable efficacy as the combination. The model adequately predicted variations of tumor response at the DT-IgG doses tested and could be used for targeting specific tumor efficacies for future testing.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Receptores ErbB/antagonistas & inibidores , Imunoglobulina G/farmacologia , Neoplasias Experimentais/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/sangue , Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/sangue , Antineoplásicos/uso terapêutico , Bevacizumab , Linhagem Celular Tumoral , Cetuximab , Receptores ErbB/genética , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/uso terapêutico , Camundongos , Camundongos Nus , Terapia de Alvo Molecular , Neoplasias Experimentais/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/genética , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Int J Cancer ; 131(4): 956-69, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21918971

RESUMO

An antibody simultaneously targeting epidermal growth factor receptor (EGFR) and vascular endothelial growth factor (VEGF), two major tumor growth-driving machineries, may provide a novel effective strategy for optimizing tumor targeting and maximizing potential clinical benefits. Human domain antibodies selected against VEGF and EGFR were formatted into a fully human dual-targeting IgG (DT-IgG) to directly target both antigens in a single molecule. We evaluated the efficacy of DT-IgG in comparison with bevacizumab and cetuximab alone and in combination in the lung cancer cell line A549 (low EGFR expression and KRAS mutant) and the head and neck squamous cell carcinoma (HNSCC) cell line Tu212 (high EGFR expression and KRAS wild type) in vitro and in vivo. DT-IgG suppressed Tu212 and A549 cell growth, inhibited EGFR activation and induced apoptosis as effectively as cetuximab, and neutralized VEGF as effectively as bevacizumab. DT-IgG induced EGFR-dependent VEGF internalization, constituting a novel antiangiogenesis mechanism. In xenograft models with lung and head and neck cancer cell lines, DT-IgG displayed efficacy equivalent to bevacizumab in diminishing tumor growth despite its short serum half-life (36 hr in rats) and both agents may constitute preferable alternatives to cetuximab in KRAS-mutant tumors. Immunofluorescence staining revealed that localization of DT-IgG was similar to that of cetuximab, largely associated with EGFR+tumor cells. Our proof of principle study suggests a DT-IgG against EGFR and VEGF as an alternative therapeutic strategy with potentially enhanced clinical benefit.


Assuntos
Receptores ErbB/imunologia , Neoplasias de Cabeça e Pescoço/terapia , Imunoglobulina G/uso terapêutico , Neoplasias Pulmonares/terapia , Fator A de Crescimento do Endotélio Vascular/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Apoptose , Bevacizumab , Linhagem Celular Tumoral , Proliferação de Células , Cetuximab , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Imunoglobulina G/imunologia , Neoplasias Pulmonares/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Dev Reprod ; 16(4): 339-51, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25949109

RESUMO

Fetal bovine serum (FBS) is the most frequently used serum for the cultivation of mammalian cells. However, since animal-derived materials might not be appropriate due to safety issues, allogeneic human serum (HS) has been used to replace FBS, particularly for the culture of human cells. While there has been a debate about the advantages of HS, its precise effect on human adult stem cells have not been clarified. The present study aimed to investigate the effect of HS on the human eyelid adipose stem cells (HEACs) in vitro. When HEACs were cultivated in a medium containing 10% HS, many cells moved into several spots and aggregated there. The phenomenon was observed as early as 9 days following 10% HS treatment, and 12 days following 5% HS plus 5% FBS treatment. However, the aggregation was never observed when the same cells were cultivated with 10% FBS or bovine serum albumin. To examine whether cell density might affect the aggregation, cells were seeded with different densities on 12-well dish. Until the beginning of aggregation, cells seeded at low densities exhibited the longest culture period of 16 days whereas cells seeded at high densities showed the shortest period of 9 days to form aggregation. The number of cells was 15.1±0.2×10(4) as the least for the low density group, and 29.3±2.8×10(4) as the greatest for the high density group. When human cord blood serum or normal bovine serum was examined for the same effect on HEACs, interestingly, cord blood serum induced the aggregation of cells whereas bovine serum treatment has never induced. When cells were cultivated with 10% HS for 9 days, they were obtained and analyzed by RT-PCR. Compared to FBS-cultivated HEACs, HS-cultivated HEACs did not express VIM, and less expressed GATA4, PALLD. On the other hand, HS-cultivated HEACs expressed MAP2 more than FBS-cultivated HEACs. In conclusion, human adult stem cells could move and form aggregates by the treatment with human body fluids.

20.
Cell Mol Neurobiol ; 30(6): 857-62, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20336484

RESUMO

Glucocorticoid (GC) hormones, increased in response to stress, can cause neuronal loss. We tested the effect of GC hormone on cell viability of neural SHSY-5Y cells and protective effects of ginsenoside Rb1 and Rg3 on the action of GC. We treated SHSY-5Y cells with increasing concentrations of synthetic GC dexamethasone (DEX; 10, 25, 50, and 100 nM) for 24 and 48 h, and then determined cell viability by using MTT assay. We then treated SHSY-5Y cells with DEX (100 nM) with or without the ginsenosides to examine their preventive effects on the cytotoxicity. To explore the underlying molecular mechanisms, we measured mRNA expression of bax and bcl-2 by using reverse transcriptase real-time PCR. SHSY-5Y cells treated with DEX significantly reduced cell viability as compared with control cells. In the presence of Rb1 or Rg3, DEX-induced cytotoxicity was effectively blocked. DEX considerably increased pro-apoptotic bax mRNA expression as compared with control cells. However, Rb1 and Rg3 completely blocked DEX-mediated up-regulation of bax expression. DEX significantly increased neuronal death in organotypic hippocampal slice cultures of rat brain with enhanced generation of ROS, which was effectively inhibited by ginsenoside Rb1 and Rg3. This suggests a potential role of the ginsenosides to target GC action in the brain.


Assuntos
Dexametasona/toxicidade , Ginsenosídeos/farmacologia , Glucocorticoides/toxicidade , Neurotoxinas/toxicidade , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Humanos , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...