Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small Methods ; 8(1): e2300650, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37800983

RESUMO

In this work, a novel real-time current-voltage (J-V) absorbance spectroscopy (RTJAS) setup is introduced for directly observing halide segregation in mixed halide perovskite solar cells under broadband light illumination, simulating solar exposure. The setup incorporates a broadband light source calibrated to one sun irradiation and a CMOS camera for simultaneous capture of all diffracted wavelengths. J-V measurements are performed concurrently with absorbance spectra collection, enabling in situ analysis of light-induced degradation due to halide segregation, including bandgap shifts and cell performance data. Comparison of photoluminescence measurements with RTJAS data reveals differing rates of bandgap decrease, underscoring the advantages of real-time measurement techniques. The work highlights the importance of accounting for experimental conditions, such as humidity and voltage injection, which can accelerate halide segregation, ultimately emphasizing the need for careful consideration of experimental conditions to accurately characterize perovskite solar cell behavior under realistic conditions.

2.
Adv Mater ; 34(51): e2206932, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36210726

RESUMO

A self-powered, color-filter-free blue photodetector (PD) based on halide perovskites is reported. A high external quantum efficiency (EQE) of 84.9%, which is the highest reported EQE in blue PDs, is achieved by engineering the A-site monovalent cations of wide-bandgap perovskites. The optimized composition of formamidinium (FA)/methylammonium (MA) increases the heat of formation, yielding a uniform and smooth film. The incorporation of Cs+ ions into the FA/MA composition suppresses the trap density and increases charge-carrier mobility, yielding the highest average EQE of 77.4%, responsivity of 0.280 A W-1 , and detectivity of 5.08 × 1012 Jones under blue light. Furthermore, Cs+ improves durability under repetitive operations and ambient atmosphere. The proposed device exhibits peak responsivity of 0.307 A W-1 , which is higher than that of the commercial InGaN-based blue PD (0.289 A W-1 ). This study will promote the development of next-generation image sensors with vertically stacked perovskite PDs.

3.
Adv Sci (Weinh) ; 8(21): e2102492, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34533002

RESUMO

Solvent engineering by Lewis-base solvent and anti-solvent is well known for forming uniform and stable perovskite thin films. The perovskite phase crystallizes from an intermediate Lewis-adduct upon annealing-induced crystallization. Herein, it is explored the effects of trimethyl phosphate (TMP), as a novel aprotic Lewis-base solvent with a low donor number for the perovskite film formation and photovoltaic characteristics of perovskite solar cells (PSCs). As compared to dimethylsulfoxide (DMSO) or dimethylformamide (DMF), the usage of TMP directly crystallizes the perovskite phase, i.e., reduces the intermediate phase to a negligible degree, right after the spin-coating, owing to the high miscibility of TMP with the anti-solvent and weak bonding in the Lewis adduct. Interestingly, the PSCs based on methylammonium lead iodide (MAPbI3 ) derived from TMP/DMF-mixed solvent exhibit a higher average power conversion efficiency of 19.68% (the best: 20.02%) with a smaller hysteresis in the current-voltage curve, compared to the PSCs that are fabricated using DMSO/DMF-mixed (19.14%) or DMF-only (18.55%) solvents. The superior photovoltaic properties are attributed to the lower defect density of the TMP/DMF-derived perovskite film. The results indicate that a high-performance PSC can be achieved by combining a weak Lewis base with a well-established solvent engineering process.

4.
ACS Appl Mater Interfaces ; 12(6): 7125-7134, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31958005

RESUMO

Perovskite solar cells (PSCs), which have surprisingly emerged in recent years, are now aiming at commercialization. Rapid, low-temperature, and continuous fabrication processes that can produce high-efficiency PSCs with a reduced fabrication cost and shortened energy payback time are important challenges on the way to commercialization. Herein, we report a reactive ion etching (RIE) method, which is an ultrafast room-temperature technique, to fabricate mesoporous TiO2 (mp-TiO2) as an electron transport layer for high-efficiency PSCs. Replacing the conventional high-temperature annealing process by RIE reduces the total processing time for fabricating 20 PSCs by 40%. Additionally, the RIE-processed mp-TiO2 exhibits enhanced electron extraction, whereupon the optimized RIE-mp-TiO2-based PSC exhibits a power conversion efficiency (PCE) of 19.60% without J-V hysteresis, when the devices were optimized with a TiCl4 surface treatment process. Finally, a flexible PSC employing RIE-mp-TiO2 is demonstrated with 17.29% PCE. Considering that the RIE process has been actively used in the semiconductor industry, including for the fabrication of silicon photovoltaic modules, the process developed in this work could be easily applied toward faster, simpler, and cheaper manufacturing of PSC modules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...