Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-439275

RESUMO

Safe, economical and effective vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are needed to achieve adequate herd immunity and halt the pandemic. We have constructed a novel SARS-CoV-2 vaccine, CoVac501, which is a self-adjuvanting peptide vaccine conjugated with Toll-like receptor 7 (TLR7) agonists. The vaccine contains two immunodominant peptides screened from receptor-binding domain (RBD) and is fully chemically synthesized. And the vaccine has optimized nanoemulsion formulation, outstanding stability and safety. In non-human primates (NHPs), CoVac501 elicited high and persistent titers of RBD-specific and protective neutralizing antibodies (NAbs), which were also effective to RBD mutations. CoVac501 was found to elicit the increase of memory T cells, antigen-specific CD8+ T cell responses and Th1-biased CD4+ T cell immune responses in NHPs. More importantly, the sera from the immunized NHPs can prevent infection of live SARS-CoV-2 in vitro. One-Sentence SummaryA novel SARS-CoV-2 vaccine we developed, CoVac501, which is a fully chemically synthesized and self-adjuvanting peptides conjugated with TLR7 agonists, can induce high-efficient humoral and cellular immune responses against SARS-CoV-2.

2.
Acta Pharmaceutica Sinica B ; (6): 858-870, 2019.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-774937

RESUMO

Recently, liposomes have been widely used in cancer therapeutics, but their anti-tumor effects are suboptimal due to limited tumor penetration. To solve this problem, researchers have made significant efforts to optimize liposomal diameters and potentials, but little attention has been paid to liposomal membrane rigidity. Herein, we sought to demonstrate the effects of cholesterol-tuned liposomal membrane rigidity on tumor penetration and anti-tumor effects. In this study, liposomes composed of hydrogenated soybean phospholipids (HSPC), 1,2-distearoyl--glycero-3-phosphoethanolamine--[methoxy(polyethylene glycol)-2000] (DSPE-PEG) and different concentrations of cholesterol were prepared. It was revealed that liposomal membrane rigidity decreased with the addition of cholesterol. Moderate cholesterol content conferred excellent diffusivity to liposomes in simulated diffusion medium, while excessive cholesterol limited the diffusion process. We concluded that the differences of the diffusion rates likely stemmed from the alterations in liposomal membrane rigidity, with moderate rigidity leading to improved diffusion. Next, the tumor penetration and the anti-tumor effects were analyzed. The results showed that liposomes with moderate rigidity gained excellent tumor penetration and enhanced anti-tumor effects. These findings illustrate a feasible and effective way to improve tumor penetration and therapeutic efficacy of liposomes by changing the cholesterol content, and highlight the importance of liposomal membrane rigidity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...