Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 10962, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768500

RESUMO

Electrons from cyanobacteria photosynthetic and respiratory systems are implicated in current generated in biophotovoltaic (BPV) devices. However, the pathway that electrons follow to electrodes remains largely unknown, limiting progress of applied research. Here we use Hilbert-Huang Transforms to decompose Synechococcus elongatus sp. PCC7942 BPV current density profiles into physically meaningful oscillatory components, and compute their instantaneous frequencies. We develop hypotheses for the genesis of the oscillations via repeat experiments with iron-depleted and 20% CO[Formula: see text] enriched biofilms. The oscillations exhibit rhythms that are consistent with the state of the art cyanobacteria circadian model, and putative exoelectrogenic pathways. In particular, we observe oscillations consistent with: rhythmic D1:1 (photosystem II core) expression; circadian-controlled glycogen accumulation; circadian phase shifts under modified intracellular %ATP; and circadian period shortening in the absence of the iron-sulphur protein LdpA. We suggest that the extracted oscillations may be used to reverse-identify proteins and/or metabolites responsible for cyanobacteria exoelectrogenesis.


Assuntos
Relógios Circadianos , Proteínas Ferro-Enxofre , Synechococcus , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ritmo Circadiano , Proteínas Ferro-Enxofre/metabolismo , Synechococcus/genética , Synechococcus/metabolismo
2.
J Hazard Mater ; 408: 124421, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33199150

RESUMO

This study presents the biodegradation potential of ethinylestradiol (EE2) in anaerobic environments using exoelectrogenic activity of Rhodopseudomonas palustris. EE2, a basic ingredient in oral contraceptives, is a significant estrogenic micropollutant in various wastewaters and is considered highly recalcitrant. This recalcitrance of EE2 has caused anoxic areas to become repositories for these pollutants. Thus, it is essential to find the microorganisms and suitable methods to degrade this compound. An initial EE2 concentration of 1 mg/L, used in an anaerobic photobioreactor, resulted in 70% EE2 degradation over a period of 16 days with an increase of 63% in hydrogen production when EE2 was used with glycerol as the main carbon source in the culture medium. Furthermore, in the novel setup of hybrid photo-assisted microbial fuel cell (h-PMFC) employed here, EE2 degradation enhanced to 89.82% with a maximum power density of 0.633 ± 0.04 mW/m2. The hybrid MFC employed here could metabolize EE2 and sustained the bio-hydrogen production for 14 days to run the hydrogen fuel cell which otherwise could not be sustained with glycerol only and thus increased the overall power output. The current work highlights the use of R. palustris and the significance of co-metabolism in bioremediation of pollutants and bioenergy generation.


Assuntos
Fontes de Energia Bioelétrica , Etinilestradiol , Biodegradação Ambiental , Hidrogênio , Rodopseudomonas
3.
Sci Rep ; 10(1): 16105, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999346

RESUMO

The biophotovoltaic cell (BPV) is deemed to be a potent green energy device as it demonstrates the generation of renewable energy from microalgae; however, inadequate electron generation from microalgae is a significant impediment for functional employment of these cells. The photosynthetic process is not only affected by the temperature, CO2 concentration and light intensity but also the spectrum of light. Thus, a detailed understanding of the influences of light spectrum is essential. Accordingly, we developed spectrally optimized light using programmable LED arrays (PLA)s to study the effect on algae growth and bioelectricity generation. Chlorella is a green microalga and contains chlorophyll-a (chl-a), which is the major light harvesting pigment that absorbs light in the blue and red spectrum. In this study, Chlorella is grown under a PLA which can optimally simulate the absorption spectrum of the pigments in Chlorella. This experiment investigated the growth, photosynthetic performance and bioelectricity generation of Chlorella when exposed to an optimally-tuned light spectrum. The algal BPV performed better under PLA with a peak power output of 0.581 mW m-2 for immobilized BPV device on day 8, which is an increase of 188% compared to operation under a conventional white LED light source. The photosynthetic performance, as measured using pulse amplitude modulation (PAM) fluorometry, showed that the optimized spectrum from the PLA gave an increase of 72% in the rETRmax value (190.5 µmol electrons m-2 s-1), compared with the conventional white light source. Highest algal biomass (1100 mg L-1) was achieved in the immobilized system on day eight, which translates to a carbon fixation of 550 mg carbon L-1. When artificial light is used for the BPV system, it should be optimized with the light spectrum and intensity best suited to the absorption capability of the pigments in the cells. Optimum artificial light source with algal BPV device can be integrated into a power management system for low power application (eg. environment sensor for indoor agriculture system).

4.
Biotechnol Biofuels ; 13: 150, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32863880

RESUMO

BACKGROUND: Understanding the extracellular electron transport pathways in cyanobacteria is a major factor towards developing biophotovoltaics. Stressing cyanobacteria cells environmentally and then probing changes in physiology or metabolism following a significant change in electron transfer rates is a common approach for investigating the electron path from cell to electrode. However, such studies have not explored how the cells' concurrent morphological adaptations to the applied stresses affect electron transfer rates. In this paper, we establish a ratio to quantify this effect in mediated systems and apply it to Synechococcus elongatus sp. PCC7942 cells grown under different nutritional regimes. RESULTS: The results provide evidence that wider and longer cells with larger surface areas have faster mediated electron transfer rates. For rod-shaped cells, increase in cell area as a result of cell elongation more than compensates for the associated decline in mass transfer coefficients, resulting in faster electron transfer. In addition, the results demonstrate that the extent to which morphological adaptations account for the changes in electron transfer rates changes over the bacterial growth cycle, such that investigations probing physiological and metabolic changes are meaningful only at certain time periods. CONCLUSION: A simple ratio for quantitatively evaluating the effects of cell morphology adaptations on electron transfer rates has been defined. Furthermore, the study points to engineering cell shape, either via environmental conditioning or genetic engineering, as a potential strategy for improving the performance of biophotovoltaic devices.

5.
Bioresour Technol ; 300: 122637, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31891855

RESUMO

The operation of bioelectrochemical systems (BESs) relies on the ability of microbes to export electrons outside of their cells. However, microorganisms are not evolutionary conceived to power BESs as most of the redox processes occur within. In this study, a low cost strategy equivalent to the one used to improve hydrogen production is employed to divert electrons from the metabolism to an electrode. Varying the ratio of nitrogen to carbon concentration (0, 0.20 and 0.54) determines what fraction of the electron flux is directed towards biosynthesis, biohydrogen generation and extracellular electron transfer. The ratio of 0.54 produced a higher specific growth rate while the ratio of 0.20 resulted in combined higher maximum specific hydrogen production and exoelectrogenic activity, translating into a maximum power density of 2.39 ± 0.13 mW m-2 in a novel hybrid hydrogen-photosynthetic microbial fuel cell. The current work sets a framework for the optimisation of R. palustris for bioenergy recovery.


Assuntos
Fontes de Energia Bioelétrica , Rodopseudomonas , Hidrogênio , Nitrogênio
6.
Sci Rep ; 7(1): 16237, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29176639

RESUMO

We report for the first time a photosynthetically active algae immobilized in alginate gel within a fuel cell design for generation of bioelectricity. The algal-alginate biofilm was utilized within a biophotovoltaics (BPV) device developed for direct bioelectricity generation from photosynthesis. A peak power output of 0.289 mWm-2 with an increase of 18% in power output compared to conventional suspension culture BPV device was observed. The increase in maximum power density was correlated to the maximum relative electron transport rate (rETRm). The semi-dry type of photosynthetically active biofilm proposed in this work may offer significantly improved performances in terms of fuel cell design, bioelectricity generation, oxygen production and CO2 reduction.

7.
Phys Rev E ; 95(2-1): 022610, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28297863

RESUMO

The fracture toughness of colloidal films is measured by characterizing cracks which form during directional drying. Images from a confocal microscope are processed to measure the crack width as a function of distance from the crack tip. Applying theory for thin elastic films the fracture toughness is extracted. It is found that the fracture toughness scales with the particle size to the -0.8 power and that the critical energy release rate scales with the particle size to the -1.3 power. In addition, the fracture toughness is found to increase at lower evaporation rates, but the film thickness does not have a significant effect.

8.
Sci Rep ; 6: 31193, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27502051

RESUMO

Microbial fuel cells operating with autotrophic microorganisms are known as biophotovoltaic devices. It represents a great opportunity for environmentally-friendly power generation using the energy of the sunlight. The efficiency of electricity generation in this novel system is however low. This is partially reflected by the poor understanding of the bioelectrochemical mechanisms behind the electron transfer from these microorganisms to the electrode surface. In this work, we propose a combination of electrochemical and fluorescence techniques, giving emphasis to the pulse amplitude modulation fluorescence. The combination of these two techniques allow us to obtain information that can assist in understanding the electrical response obtained from the generation of electricity through the intrinsic properties related to the photosynthetic efficiency that can be obtained from the fluorescence emitted. These were achieved quantitatively by means of observed changes in four photosynthetic parameters with the bioanode generating electricity. These are the maximum quantum yield (Fv/Fm), alpha (α), light saturation coefficient (Ek) and maximum rate of electron transfer (rETRm). The relationship between the increases in the current density collected by the bioanode to the decrease of the rETRm values in the photosynthetic pathway for the two microorganisms was also discussed.


Assuntos
Fontes de Energia Bioelétrica , Fotossíntese
9.
Sci Rep ; 4: 7562, 2014 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-25531093

RESUMO

The search for renewable energy sources has become challenging in the current era, as conventional fuel sources are of finite origins. Recent research interest has focused on various biophotovoltaic (BPV) platforms utilizing algae, which are then used to harvest solar energy and generate electrical power. The majority of BPV platforms incorporate indium tin oxide (ITO) anodes for the purpose of charge transfer due to its inherent optical and electrical properties. However, other materials such as reduced graphene oxide (RGO) could provide higher efficiency due to their intrinsic electrical properties and biological compatibility. In this work, the performance of algae biofilms grown on RGO and ITO anodes were measured and discussed. Results indicate improved peak power of 0.1481 mWm(-2) using the RGO electrode and an increase in efficiency of 119%, illustrating the potential of RGO as an anode material for applications in biofilm derived devices and systems.


Assuntos
Fontes de Energia Bioelétrica , Biofilmes , Chlorella/fisiologia , Grafite/química , Eletrodos
10.
PLoS One ; 9(5): e97643, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24874081

RESUMO

In photosynthesis, a very small amount of the solar energy absorbed is transformed into chemical energy, while the rest is wasted as heat and fluorescence. This excess energy can be harvested through biophotovoltaic platforms to generate electrical energy. In this study, algal biofilms formed on ITO anodes were investigated for use in the algal biophotovoltaic platforms. Sixteen algal strains, comprising local isolates and two diatoms obtained from the Culture Collection of Marine Phytoplankton (CCMP), USA, were screened and eight were selected based on the growth rate, biochemical composition and photosynthesis performance using suspension cultures. Differences in biofilm formation between the eight algal strains as well as their rapid light curve (RLC) generated using a pulse amplitude modulation (PAM) fluorometer, were examined. The RLC provides detailed information on the saturation characteristics of electron transport and overall photosynthetic performance of the algae. Four algal strains, belonging to the Cyanophyta (Cyanobacteria) Synechococcus elongatus (UMACC 105), Spirulina platensis. (UMACC 159) and the Chlorophyta Chlorella vulgaris (UMACC 051), and Chlorella sp. (UMACC 313) were finally selected for investigation using biophotovoltaic platforms. Based on power output per Chl-a content, the algae can be ranked as follows: Synechococcus elongatus (UMACC 105) (6.38×10(-5) Wm(-2)/µgChl-a)>Chlorella vulgaris UMACC 051 (2.24×10(-5) Wm(-2)/µgChl-a)>Chlorella sp.(UMACC 313) (1.43×10(-5) Wm(-2)/µgChl-a)>Spirulina platensis (UMACC 159) (4.90×10(-6) Wm(-2)/µgChl-a). Our study showed that local algal strains have potential for use in biophotovoltaic platforms due to their high photosynthetic performance, ability to produce biofilm and generation of electrical power.


Assuntos
Biofilmes , Cianobactérias/fisiologia , Fotossíntese , Fitoplâncton/fisiologia , Compostos de Estanho , Cianobactérias/química , Microalgas/química , Microalgas/fisiologia , Fitoplâncton/química
11.
Phys Chem Chem Phys ; 15(18): 6903-11, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23549224

RESUMO

Using an in-house developed platform, the performance of an Arthrospira maxima biofilm photosynthetic microbial fuel cell (PMFC) was monitored both optically and electrochemically. Fluorescence (excitation wavelength 633 nm, emission range 640 to 800 nm for detection of fluorescence), power density and current output of the PMFC were recorded in real time. Confocal microscopy performed in situ allowed detailed fluorescence imaging to further improve the understanding of the photosynthetic activity of the biofilm that developed on the anode surface of the PMFC, whilst power and current outputs indicated the performance of the cell. The PMFC was shown to be sensitive to temperature and light perturbations with increased temperatures and light intensities resulting in improved performance. A direct relationship between the fluorescent signature and the amount of current produced was identified. With a decreasing external load and increasing current production, the biofilm attached to the anode electrode showed increased fluorescence inferring improved activity of the photosynthetic material. Furthermore, the imaging proved that viable cells covered the entire surface area of the biofilm and that the fluorescence increased with increasing distance (z axis) from the electrode surface.


Assuntos
Fontes de Energia Bioelétrica , Biofilmes , Cianobactérias/fisiologia , Eletrodos , Luz , Microscopia Confocal , Fotossíntese , Temperatura
12.
Appl Microbiol Biotechnol ; 97(1): 429-38, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23093175

RESUMO

Vascular plant bio-photovoltaics (VP-BPV) is a recently developed technology that uses higher plants to harvest solar energy and the metabolic activity of heterotrophic microorganisms in the plant rhizosphere to generate electrical power. In the present study, electrical output and maximum power output variations were investigated in a novel VP-BPV configuration using the crop plant rice (Oryza sativa L.) or an associated weed, Echinochloa glabrescens (Munro ex Hook. f.). In order to compare directly the physiological performances of these two species in VP-BPV systems, plants were grown in the same soil and glasshouse conditions, while the bio-electrochemical systems were operated in the absence of additional energy inputs (e.g. bias potential, injection of organic substrate and/or bacterial pre-inoculum). Diurnal oscillations were clearly observed in the electrical outputs of VP-BPV systems containing the two species over an 8-day growth period. During this 8-day period, O. sativa generated charge ∼6 times faster than E. glabrescens. This greater electrogenic activity generated a total charge accumulation of 6.75 ± 0.87 Coulombs for O. sativa compared to 1.12 ± 0.16 for E. glabrescens. The average power output observed over a period of about 30 days for O. sativa was significantly higher (0.980 ± 0.059 GJ ha(-1) year(-1)) than for E. glabrescens (0.088 ± 0.008 GJ ha(-1) year(-1)). This work indicates that electrical power can be generated in both VP-BPV systems (O. sativa and E. glabrescens) when bacterial populations are self-forming. Possible reasons for the differences in power outputs between the two plant species are discussed.


Assuntos
Bactérias/metabolismo , Fontes de Energia Bioelétrica , Echinochloa/metabolismo , Eletricidade , Oryza/metabolismo , Fotossíntese , Echinochloa/microbiologia , Oryza/microbiologia
13.
Phys Chem Chem Phys ; 14(35): 12221-9, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22864466

RESUMO

Bio-photovoltaic cells (BPVs) are a new photo-bio-electrochemical technology for harnessing solar energy using the photosynthetic activity of autotrophic organisms. Currently power outputs from BPVs are generally low and suffer from low efficiencies. However, a better understanding of the electrochemical interactions between the microbes and conductive materials will be likely to lead to increased power yields. In the current study, the fresh-water, filamentous cyanobacterium Pseudanabaena limnetica (also known as Oscillatoria limnetica) was investigated for exoelectrogenic activity. Biofilms of P. limnetica showed a significant photo response during light-dark cycling in BPVs under mediatorless conditions. A multi-channel BPV device was developed to compare quantitatively the performance of photosynthetic biofilms of this species using a variety of different anodic conductive materials: indium tin oxide-coated polyethylene terephthalate (ITO), stainless steel (SS), glass coated with a conductive polymer (PANI), and carbon paper (CP). Although biofilm growth rates were generally comparable on all materials tested, the amplitude of the photo response and achievable maximum power outputs were significantly different. ITO and SS demonstrated the largest photo responses, whereas CP showed the lowest power outputs under both light and dark conditions. Furthermore, differences in the ratios of light : dark power outputs indicated that the electrochemical interactions between photosynthetic microbes and the anode may differ under light and dark conditions depending on the anodic material used. Comparisons between BPV performances and material characteristics revealed that surface roughness and surface energy, particularly the ratio of non-polar to polar interactions (the CQ ratio), may be more important than available surface area in determining biocompatibility and maximum power outputs in microbial electrochemical systems. Notably, CP was readily outperformed by all other conductive materials tested, indicating that carbon may not be an optimal substrate for microbial fuel cell operation.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Cianobactérias/fisiologia , Biofilmes , Eletrodos , Desenho de Equipamento , Luz , Fotossíntese , Energia Solar , Propriedades de Superfície
14.
Anal Chem ; 84(15): 6686-92, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22789156

RESUMO

The flow rate dependencies of the aperiodic direct current (dc) and fundamental to eighth alternating current (ac) harmonic components derived from large-amplitude Fourier transformed ac (FT-ac) voltammetry have been evaluated in a microfluidic flow cell containing a 25 µm gold microband electrode. For the oxidation of ferrocenemethanol ([FcMeOH]/[FcMeOH](+) process) in aqueous 0.1 M KNO(3) electrolyte, standard "Levich-like" dc behavior is observed for the aperiodic dc component, which enables the diffusion coefficient for FcMeOH to be obtained. In experimental studies, the first and second ac harmonic components contain contributions from the double layer capacitance current, thereby allowing details of the non-Faradaic current to be established. In contrast, the higher order harmonics and dc aperiodic component are essentially devoid of double layer capacitance contributions allowing the faradaic current dependence on flow rate to be studied. Significantly, flow rate independent data conforming to linear diffusion controlled theory are found in the sixth and higher ac harmonics at a frequency of 15 Hz and for all ac harmonics at a frequency of ≥ 90 Hz. Analysis of FT-ac voltammograms by theory based on stationary microband or planar electrode configurations confirms that stationary microband and planar electrode configurations and experimental data all converge for the higher order harmonics and establishes that the electrode kinetics are very fast (≥1 cms(-1)). The ability to locate, from a single experiment, a dc Faradaic component displaying Levich behavior, fundamental and second harmonics that contain details of the double layer capacitance, and Faradaic ac higher order harmonic currents that are devoid of capacitance, independent of the volume flow rate and also conform closely to mass transport by planar diffusion, provides enhanced flexibility in mass transport and electrode kinetic analysis and in understanding the performance of hydrodynamic electrochemical cells and reactors.

15.
N Biotechnol ; 29(4): 494-501, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22341688

RESUMO

In this work a novel microfluidic device was constructed in situ containing the smallest microscopic co-polymeric immobilised metal affinity (IMA) adsorbent yet documented. This device has for the first time allowed the microlitre scale chromatographic assay of histidine-tagged proteins in a biological sample. To enable this approach, rather than using a high capacity commercial packed bed column which requires large sample volumes and would be susceptible to occlusion by cell debris, a microgram capacity co-polymeric chromatographic substrate suitable for analytical applications was fabricated within a microfluidic channel. This porous co-polymeric IMA micro-chromatographic element, only 27µl in volume, was assessed for the analytical capture of two different histidine-tagged recombinant fusion proteins. The micro-chromatographic adsorber was fabricated in situ by photo-polymerising an iminodiacetic acid (IDA) functionalised polymer matrix around a template of fused 100µm diameter NH(4)Cl particles entirely within the microfluidic channel and then etching away the salt with water to form a network of interconnected voids. The surface of the micro-chromatographic adsorber was chemically functionalised with a chelating agent and loaded with Cu(2+) ions. FTIR and NMR analysis verified the presence of the chelating agent on the adsorbent surface and its Cu(2+) ion binding capacity was determined to be 2.4µmol Cu(2+) (ml of adsorbent)(-1). Micro-scale equilibrium adsorption studies using the two different histidine-tagged proteins, LacI-His(6)-GFP and α-Synuclein-His(8)-YFP, were carried out and the protein binding capacity of the adsorbent was determined to be 0.370 and 0.802mg(g of adsorbent)(-1), respectively. The dynamic binding capacity was determined at four different flow rates and found to be comparable to the equilibrium binding capacity at low flow rates. The sensing platform was also used to adsorb LacI-His(6)-GFP protein from crude cell lysate. During adsorption, laser scanning confocal microscopy identified locations within the adsorbent where protein adsorption and desorption occurred. The findings indicate that minimal channelling, selective product capture and near quantitative elution of the captured (adsorbed) product could be achieved, supporting the application of this new device as a high-throughput process analytical tool (PAT) for the in-process monitoring of histidine-tagged proteins in manufacturing.


Assuntos
Cromatografia de Afinidade , Metais/química , Técnicas Analíticas Microfluídicas , Adsorção , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cobre/química , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Histidina/química , Histidina/metabolismo , Iminoácidos/química , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Polímeros/síntese química , Polímeros/química , Ligação Proteica
17.
Angew Chem Int Ed Engl ; 48(13): 2376-8, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19229911

RESUMO

On the move: Electrochemistry has been used to detect and monitor the motion of a single 330 microm sphere in both time and space (see picture). The motion was recorded simultaneously by video and chronoamperometry, which showed an excellent correlation. The ability to fabricate electrode arrays capable of spatial resolution at the sub-micrometer scale opens the possibility of using this technique to monitor considerably smaller particles.


Assuntos
Técnicas Eletroquímicas , Compostos Ferrosos/química , Metalocenos , Movimento (Física) , Tempo , Gravação em Vídeo
18.
Lab Chip ; 8(11): 1937-42, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18941696

RESUMO

This paper presents a new electrochemical method for the detection and characterisation of aqueous droplets in an organic carrier fluid (1,2-dichloroethane) formed in flow-focusing microfluidic devices. The devices consist of a conventional flow-focusing channel 250 microm wide and 250 microm deep cast out of poly(dimethylsiloxane) (PDMS) which is sealed onto a glass substrate containing a set of microelectrodes 100 microm long. Chronoamperometric analysis of a suitable electrolyte contained in the organic phase is presented for characterising the droplet frequency and size. This chronoamperometric method is then extended to a dual working electrode approach in order to determine the velocity of the droplet. Good agreement between experimental measurements and theory was observed.


Assuntos
Microfluídica/métodos , Custos e Análise de Custo , Dimetilpolisiloxanos/química , Eletroquímica , Eletrônica , Vidro/química , Microeletrodos , Microfluídica/economia , Fenômenos Ópticos
19.
Anal Chem ; 79(16): 6128-34, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17630718

RESUMO

Magnetic resonance imaging (MRI) is a noninvasive technique that can be used to visualize mixing processes in optically opaque systems in up to three dimensions. Here, MRI has been used for the first time to obtain both cross-sectional velocity and concentration maps of flow through an optically opaque Y-shaped microfluidic sensor. Images of 23 micromx23 microm resolution were obtained for a channel of rectangular cross section (250 micromx500 microm) fed by two square inlets (250 micromx250 microm). Both miscible and immiscible liquid systems have been studied. These include a system in which the coupling of flow and mass transfer has been observed, as the diffusion of the analyte perturbs local hydrodynamics. MRI has been shown to be a versatile tool for the study of mixing processes in a microfluidic system via the multidimensional spatial resolution of flow and mass transfer.


Assuntos
Imageamento por Ressonância Magnética/métodos , Técnicas Analíticas Microfluídicas/métodos , Difusão , Microfluídica
20.
Anal Chem ; 79(11): 4101-9, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17472341

RESUMO

A novel microfluidic approach for the quantification of reaction kinetics is presented. A three-dimensional finite difference numerical simulation was developed in order to extract quantitative kinetic information from fluorescence lifetime imaging experimental data. This approach was first utilized for the study of a fluorescence quenching reaction within a microchannel; the lifetime of a fluorophore was used to map the diffusion of a quencher across the microchannel. The approach was then applied to a more complex chemical reaction between a fluorescent amine and an acid chloride, via numerical simulation the bimolecular rate constant for this reaction was obtained.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Espectrometria de Fluorescência/instrumentação , Espectrometria de Fluorescência/métodos , Cinética , Microscopia Eletrônica de Varredura , Sensibilidade e Especificidade , Soluções , Sacarose , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...