Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 89(5): 817-838, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38880644

RESUMO

In recent years, the role of cellular metabolism in immunity has come into the focus of many studies. These processes form a basis for the maintenance of tissue integrity and homeostasis, as well as represent an integral part of the immune response, in particular, inflammation. Metabolic adaptations not only ensure energy supply for immune response, but also affect the functions of immune cells by controlling transcriptional and post-transcriptional programs. Studying the immune cell metabolism facilitates the search for new treatment approaches, especially for metabolic disorders. Macrophages, innate immune cells, are characterized by a high functional plasticity and play a key role in homeostasis and inflammation. Depending on the phenotype and origin, they can either perform various regulatory functions or promote inflammation state, thus exacerbating the pathological condition. Furthermore, their adaptations to the tissue-specific microenvironment influence the intensity and type of immune response. The review examines the effect of metabolic reprogramming in macrophages on the functional activity of these cells and their polarization. The role of immunometabolic adaptations of myeloid cells in tissue homeostasis and in various pathological processes in the context of inflammatory and metabolic diseases is specifically discussed. Finally, modulation of the macrophage metabolism-related mechanisms reviewed as a potential therapeutic approach.


Assuntos
Homeostase , Inflamação , Macrófagos , Macrófagos/metabolismo , Macrófagos/imunologia , Humanos , Inflamação/metabolismo , Inflamação/imunologia , Animais
2.
Biochemistry (Mosc) ; 89(5): 839-852, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38880645

RESUMO

Tumor-associated macrophages (TAMs) are an important component of the tumor microenvironment (TME) and the most abundant population of immune cells infiltrating a tumor. TAMs can largely determine direction of anti-tumor immune response by promoting it or, conversely, contribute to formation of an immunosuppressive TME that allows tumors to evade immune control. Through interactions with tumor cells or other cells in the microenvironment and, as a result of action of anti-cancer therapy, macrophages can enter senescence. In this review, we have attempted to summarize information available in the literature on the role of senescent macrophages in tumors. With the recent development of senolytic therapeutic strategies aimed at removing senescent cells from an organism, it seems important to discuss functions of the senescent macrophages and potential role of the senolytic drugs in reprogramming TAMs to enhance anti-tumor immune response and improve efficacy of cancer treatment.


Assuntos
Senescência Celular , Neoplasias , Microambiente Tumoral , Macrófagos Associados a Tumor , Microambiente Tumoral/imunologia , Humanos , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Animais , Macrófagos/imunologia , Macrófagos/metabolismo , Biomarcadores Tumorais/metabolismo
3.
Front Immunol ; 14: 1172467, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153552

RESUMO

The naked mole-rat (NMR) is a unique long-lived rodent which is highly resistant to age-associated disorders and cancer. The immune system of NMR possesses a distinct cellular composition with the prevalence of myeloid cells. Thus, the detailed phenotypical and functional assessment of NMR myeloid cell compartment may uncover novel mechanisms of immunoregulation and healthy aging. In this study gene expression signatures, reactive nitrogen species and cytokine production, as well as metabolic activity of classically (M1) and alternatively (M2) activated NMR bone marrow-derived macrophages (BMDM) were examined. Polarization of NMR macrophages under pro-inflammatory conditions led to expected M1 phenotype characterized by increased pro-inflammatory gene expression, cytokine production and aerobic glycolysis, but paralleled by reduced production of nitric oxide (NO). Under systemic LPS-induced inflammatory conditions NO production also was not detected in NMR blood monocytes. Altogether, our results indicate that NMR macrophages are capable of transcriptional and metabolic reprogramming under polarizing stimuli, however, NMR M1 possesses species-specific signatures as compared to murine M1, implicating distinct adaptations in NMR immune system.


Assuntos
Citocinas , Macrófagos , Camundongos , Animais , Fenótipo , Citocinas/metabolismo , Ratos-Toupeira
4.
Biochim Biophys Acta Mol Basis Dis ; 1868(12): 166531, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36038040

RESUMO

Asthma is one of the most common chronic diseases. In many cases it is preceded by the development of an immune response to allergens such as animal fur, dust, pollens and etc. In human population this disease is heterogeneous, and no selective drugs are available at the moment for some endotypes of asthma. The role of the adaptive immune system in the pathogenesis of asthma was extensively studied, while the role of innate immune cells, in particular myeloid cells, was not sufficiently addressed. Myeloid cells, such as macrophages and dendritic cells, are characterized by high plasticity, heterogenicity and ability to undergo polarization in response to various pathogenic stimuli, including those engaging innate immune receptors. Recently, special attention was drawn to the link between polarization of macrophages and cell metabolism. We hypothesized that immunometabolic reprogramming of myeloid cells, in particular, of macrophages and dendritic cells during sensitization with an allergen may affect further immune response and asthma development. To test this hypothesis, we generated distinct types of myeloid cells in vitro from murine bone marrow and analyzed their immunometabolic profiles upon activation with house dust mite extract (HDM) and its key active components. We found that the combination of lipopolysaccharide (LPS) and beta-glucan is sufficient to upregulate proinflammatory cytokine production as well as respiratory and glycolytic capacity of myeloid cells, comparably to HDM. This specific immunometabolic phenotype was associated with altered mitochondrial morphology and possibly with increased ROS production in macrophages. Moreover, we found that both TNF production and metabolic remodeling of macrophages in response to HDM are TLR4-dependent processes. Altogether, these results expand our understanding of molecular mechanisms underlying asthma induction and pathogenesis and may potentially lead to new therapeutic strategies for the treatment of this disease.


Assuntos
Asma , beta-Glucanas , Alérgenos , Animais , Asma/metabolismo , Citocinas/metabolismo , Poeira , Humanos , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Camundongos , Fenótipo , Pyroglyphidae , Espécies Reativas de Oxigênio , Receptor 4 Toll-Like
5.
Front Immunol ; 12: 661900, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054827

RESUMO

TNF is a multifunctional cytokine with its key functions attributed to inflammation, secondary lymphoid tissue organogenesis and immune regulation. However, it is also a physiological regulator of hematopoiesis and is involved in development and homeostatic maintenance of various organs and tissues. Somewhat unexpectedly, the most important practical application of TNF biology in medicine is anti-TNF therapy in several autoimmune diseases. With increased number of patients undergoing treatment with TNF inhibitors and concerns regarding possible adverse effects of systemic cytokine blockade, the interest in using humanized mouse models to study the efficacy and safety of TNF-targeting biologics in vivo is justified. This Perspective discusses the main functions of TNF and its two receptors, TNFR1 and TNFR2, in steady state, as well as in emergency hematopoiesis. It also provides a comparative overview of existing mouse lines with humanization of TNF/TNFR system. These genetically engineered mice allow us to study TNF signaling cascades in the hematopoietic compartment in the context of various experimental disease models and for evaluating the effects of various human TNF inhibitors on hematopoiesis and other physiological processes.


Assuntos
Hematopoese/efeitos dos fármacos , Hematopoese/imunologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/imunologia , Animais , Células Cultivadas , Humanos , Inflamação/imunologia , Camundongos , Camundongos Transgênicos , Receptores Tipo I de Fatores de Necrose Tumoral/antagonistas & inibidores , Receptores Tipo II do Fator de Necrose Tumoral/antagonistas & inibidores , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...