Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 28(Pt 1): 350-361, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33399587

RESUMO

For the High-Energy-Density (HED) beamline at the SASE2 undulator of the European XFEL, a hard X-ray split-and-delay unit (SDU) has been built enabling time-resolved pump/probe experiments with photon energies between 5 keV and 24 keV. The optical layout of the SDU is based on geometrical wavefront splitting and multilayer Bragg mirrors. Maximum delays between Δτ = ±1 ps at 24 keV and Δτ = ±23 ps at 5 keV will be possible. Time-dependent wavefront propagation simulations were performed by means of the Synchrotron Radiation Workshop (SRW) software in order to investigate the impact of the optical layout, including diffraction on the beam splitter and recombiner edges and the three-dimensional topography of all eight mirrors, on the spatio-temporal properties of the XFEL pulses. The radiation is generated from noise by the code FAST which simulates the self-amplified spontaneous emission (SASE) process. A fast Fourier transformation evaluation of the disturbed interference pattern yields for ideal mirror surfaces a coherence time of τc = 0.23 fs and deduces one of τc = 0.21 fs for the real mirrors, thus with an error of Δτ = 0.02 fs which is smaller than the deviation resulting from shot-to-shot fluctuations of SASE2 pulses. The wavefronts are focused by means of compound refractive lenses in order to achieve fluences of a few hundred mJ mm-2 within a spot width of 20 µm (FWHM) diameter. Coherence effects and optics imperfections increase the peak intensity between 200 and 400% for pulse delays within the coherence time. Additionally, the influence of two off-set mirrors in the HED beamline are discussed. Further, we show the fluence distribution for Δz = ±3 mm around the focal spot along the optical axis. The simulations show that the topographies of the mirrors of the SDU are good enough to support X-ray pump/X-ray probe experiments.

2.
Phys Rev Lett ; 102(3): 035502, 2009 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-19257367

RESUMO

Coherent diffractive imaging for the reconstruction of a two-dimensional (2D) finite crystal structure with a single pulse train of free-electron laser radiation at 7.97 nm wavelength is demonstrated. This measurement shows an advance on traditional coherent imaging techniques by applying it to a periodic structure. It is also significant that this approach paves the way for the imaging of the class of specimens which readily form 2D, but not three-dimensional crystals. We show that the structure is reconstructed to the detected resolution, given an adequate signal-to-noise ratio.


Assuntos
Cristalografia por Raios X/métodos , Cristalografia por Raios X/instrumentação , Elétrons , Processamento de Imagem Assistida por Computador/métodos , Lasers , Proteínas/química , Difração de Raios X/métodos
3.
Phys Rev Lett ; 98(18): 183001, 2007 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-17501569

RESUMO

In a proof-of-principle experiment, we demonstrate high-resolution resonant laser excitation in the soft x-ray region at 48.6 eV of the 2 (2)S(1/2) to 2 (2)P(1/2) transition of Li-like Fe23+ ions trapped in an electron beam ion trap by using ultrabrilliant light from Free Electron Laser in Hamburg (FLASH). High precision spectroscopic studies of highly charged ions at this and upcoming x-ray lasers with an expected accuracy gain up to a factor of a thousand, become possible with our technique, thus potentially yielding fundamental insights, e.g., into basic aspects of QED.


Assuntos
Lasers , Espectrometria por Raios X/métodos , Íons , Ferro/química , Fótons , Raios X
4.
J Synchrotron Radiat ; 10(Pt 5): 349-53, 2003 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12944618

RESUMO

The DELSY (Dubna Electron Synchrotron) project is under development at the Joint Institute for Nuclear Research [Arkhipov et al. (2001). Nucl. Instrum. Methods, A467, 57-62; Arkhipov et al. (2001). Nucl. Instrum. Methods, A470, 1-6; Titkova et al. (2000). Proceedings of the Seventh European Particle Accelerator Conference, pp. 702-704]. It is based on an acceleration facility donated to the Joint Institute for Nuclear Research by the Institute for Nuclear and High Energy Physics (NIKHEF, Amsterdam). The NIKHEF accelerator facility consists of the linear electron accelerator MEA, which has an electron energy of 700 MeV, and the electron storage ring AmPS, with a maximum energy of 900 MeV and a beam current of 200 mA. There are three phases to the construction of the DELSY facility. Phase I will be accomplished with the construction of a complex of free-electron lasers covering continuously the spectrum from the far infrared down to the ultraviolet ( approximately 150 nm). Phase II will be accomplished with the commissioning of the storage ring DELSY. Complete commissioning of the DELSY project will take place after finishing Phase III, the construction of an X-ray free-electron laser. This phase is considered as the ultimate goal of the project; it is currently under development and is not described in this paper.

5.
Nature ; 420(6915): 482-5, 2002 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-12466837

RESUMO

Intense radiation from lasers has opened up many new areas of research in physics and chemistry, and has revolutionized optical technology. So far, most work in the field of nonlinear processes has been restricted to infrared, visible and ultraviolet light, although progress in the development of X-ray lasers has been made recently. With the advent of a free-electron laser in the soft-X-ray regime below 100 nm wavelength, a new light source is now available for experiments with intense, short-wavelength radiation that could be used to obtain deeper insights into the structure of matter. Other free-electron sources with even shorter wavelengths are planned for the future. Here we present initial results from a study of the interaction of soft X-ray radiation, generated by a free-electron laser, with Xe atoms and clusters. We find that, whereas Xe atoms become only singly ionized by the absorption of single photons, absorption in clusters is strongly enhanced. On average, each atom in large clusters absorbs up to 400 eV, corresponding to 30 photons. We suggest that the clusters are heated up and electrons are emitted after acquiring sufficient energy. The clusters finally disintegrate completely by Coulomb explosion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...