Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 125(18): 183902, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33196245

RESUMO

We report the creation of quasi-1D excited matter-wave solitons, "breathers," by quenching the strength of the interactions in a Bose-Einstein condensate with attractive interactions. We characterize the resulting breathing dynamics and quantify the effects of the aspect ratio of the confining potential, the strength of the quench, and the proximity of the 1D-3D crossover for the two-soliton breather. Furthermore, we demonstrate the complex dynamics of a three-soliton breather created by a stronger interaction quench. Our experimental results, which compare well with numerical simulations, provide a pathway for utilizing matter-wave breathers to explore quantum effects in large many-body systems.

2.
Phys Rev Lett ; 106(2): 025303, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21405238

RESUMO

Two zero-range-interacting atoms in a circular, transversely harmonic waveguide are used as a test bench for a quantitative description of the crossover between integrability and chaos in a quantum system with no selection rules. For such systems we show that the expectation value after relaxation of a generic observable is given by a linear interpolation between its initial and thermal expectation values. The variable of this interpolation is universal; it governs this simple law to cover the whole spectrum of the chaotic behavior from integrable regime through the well-developed quantum chaos. The predictions are confirmed for the waveguide system, where the mode occupations and the trapping energy were used as the observables of interest; a variety of the initial states and a full range of the interaction strengths have been tested.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(2 Pt 2): 026612, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17358441

RESUMO

We propose a way to control solitons in chi(2) (quadratically nonlinear) systems by means of periodic modulation imposed on the phase-mismatch parameter ("mismatch management," MM). It may be realized in the cotransmission of fundamental-frequency (FF) and second-harmonic (SH) waves in a planar optical waveguide via a long-period modulation of the usual quasi-phase-matching pattern of ferroelectric domains. In an altogether different physical setting, the MM may also be implemented by dint of the Feshbach resonance in a harmonically modulated magnetic field in a hybrid atomic-molecular Bose-Einstein condensate (BEC), with the atomic and molecular mean fields (MFs) playing the roles of the FF and SH, respectively. Accordingly, the problem is analyzed in two different ways. First, in the optical model, we identify stability regions for spatial solitons in the MM system, in terms of the MM amplitude and period, using the MF equations for spatially inhomogeneous configurations. In particular, an instability enclave is found inside the stability area. The robustness of the solitons is also tested against variation of the shape of the input pulse, and a threshold for the formation of stable solitons is found in terms of the power. Interactions between stable solitons are virtually unaffected by the MM. The second method (parametric approximation), going beyond the MF description, is developed for spatially homogeneous states in the BEC model. It demonstrates that the MF description is valid for large modulation periods, while, at smaller periods, non-MF components acquire gain, which implies destruction of the MF under the action of the high-frequency MM.

4.
Phys Rev Lett ; 96(16): 163201, 2006 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-16712226

RESUMO

Three-body collisions of ultracold identical Bose atoms under tight cylindrical confinement are analyzed. A Feshbach resonance in two-body collisions is described by a two-channel zero-range interaction. Elimination of the closed channel in the three-body problem reduces the interaction to a one-channel zero-range one with an energy-dependent strength. The related integrable Lieb-Liniger-McGuire (LLMG) model, with an energy-independent strength, forbids all chemical processes, such as three-atom association and diatom dissociation, as well as reflection in atom-diatom collisions. The resonant case is analyzed by a numerical solution of the Faddeev equations. The results demonstrate that as the internal symmetry of the LLMG model is lifted, reflection and chemical reactions become allowed and may be observed in experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...