Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Immunol ; 22(10): 1327-1340, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34556886

RESUMO

During the germinal center (GC) reaction, B cells undergo profound transcriptional, epigenetic and genomic architectural changes. How such changes are established remains unknown. Mapping chromatin accessibility during the humoral immune response, we show that OCT2 was the dominant transcription factor linked to differential accessibility of GC regulatory elements. Silent chromatin regions destined to become GC-specific super-enhancers (SEs) contained pre-positioned OCT2-binding sites in naive B cells (NBs). These preloaded SE 'seeds' featured spatial clustering of regulatory elements enriched in OCT2 DNA-binding motifs that became heavily loaded with OCT2 and its GC-specific coactivator OCAB in GC B cells (GCBs). SEs with high abundance of pre-positioned OCT2 binding preferentially formed long-range chromatin contacts in GCs, to support expression of GC-specifying factors. Gain in accessibility and architectural interactivity of these regions were dependent on recruitment of OCAB. Pre-positioning key regulators at SEs may represent a broadly used strategy for facilitating rapid cell fate transitions.


Assuntos
Cromatina/imunologia , Imunidade Humoral/imunologia , Transportador 2 de Cátion Orgânico/imunologia , Domínios Proteicos/imunologia , Animais , Linfócitos B/imunologia , Diferenciação Celular/imunologia , Epigenômica/métodos , Feminino , Genômica/métodos , Centro Germinativo/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição/imunologia
2.
Nature ; 589(7841): 293-298, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33299182

RESUMO

H1 linker histones are the most abundant chromatin-binding proteins1. In vitro studies indicate that their association with chromatin determines nucleosome spacing and enables arrays of nucleosomes to fold into more compact chromatin structures. However, the in vivo roles of H1 are poorly understood2. Here we show that the local density of H1 controls the balance of repressive and active chromatin domains by promoting genomic compaction. We generated a conditional triple-H1-knockout mouse strain and depleted H1 in haematopoietic cells. H1 depletion in T cells leads to de-repression of T cell activation genes, a process that mimics normal T cell activation. Comparison of chromatin structure in normal and H1-depleted CD8+ T cells reveals that H1-mediated chromatin compaction occurs primarily in regions of the genome containing higher than average levels of H1: the chromosome conformation capture (Hi-C) B compartment and regions of the Hi-C A compartment marked by PRC2. Reduction of H1 stoichiometry leads to decreased H3K27 methylation, increased H3K36 methylation, B-to-A-compartment shifting and an increase in interaction frequency between compartments. In vitro, H1 promotes PRC2-mediated H3K27 methylation and inhibits NSD2-mediated H3K36 methylation. Mechanistically, H1 mediates these opposite effects by promoting physical compaction of the chromatin substrate. Our results establish H1 as a critical regulator of gene silencing through localized control of chromatin compaction, 3D genome organization and the epigenetic landscape.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/genética , Epigênese Genética , Histonas/metabolismo , Animais , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular/genética , Cromatina/química , Cromatina/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Inativação Gênica , Histonas/química , Ativação Linfocitária/genética , Masculino , Metilação , Camundongos , Camundongos Knockout
3.
Nature ; 589(7841): 299-305, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33299181

RESUMO

Linker histone H1 proteins bind to nucleosomes and facilitate chromatin compaction1, although their biological functions are poorly understood. Mutations in the genes that encode H1 isoforms B-E (H1B, H1C, H1D and H1E; also known as H1-5, H1-2, H1-3 and H1-4, respectively) are highly recurrent in B cell lymphomas, but the pathogenic relevance of these mutations to cancer and the mechanisms that are involved are unknown. Here we show that lymphoma-associated H1 alleles are genetic driver mutations in lymphomas. Disruption of H1 function results in a profound architectural remodelling of the genome, which is characterized by large-scale yet focal shifts of chromatin from a compacted to a relaxed state. This decompaction drives distinct changes in epigenetic states, primarily owing to a gain of histone H3 dimethylation at lysine 36 (H3K36me2) and/or loss of repressive H3 trimethylation at lysine 27 (H3K27me3). These changes unlock the expression of stem cell genes that are normally silenced during early development. In mice, loss of H1c and H1e (also known as H1f2 and H1f4, respectively) conferred germinal centre B cells with enhanced fitness and self-renewal properties, ultimately leading to aggressive lymphomas with an increased repopulating potential. Collectively, our data indicate that H1 proteins are normally required to sequester early developmental genes into architecturally inaccessible genomic compartments. We also establish H1 as a bona fide tumour suppressor and show that mutations in H1 drive malignant transformation primarily through three-dimensional genome reorganization, which leads to epigenetic reprogramming and derepression of developmentally silenced genes.


Assuntos
Transformação Celular Neoplásica/genética , Cromatina/química , Cromatina/genética , Histonas/deficiência , Histonas/genética , Linfoma/genética , Linfoma/patologia , Alelos , Animais , Linfócitos B/metabolismo , Linfócitos B/patologia , Autorrenovação Celular , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Genes Supressores de Tumor , Centro Germinativo/patologia , Histonas/metabolismo , Humanos , Linfoma/metabolismo , Camundongos , Mutação , Células-Tronco/metabolismo , Células-Tronco/patologia
4.
Blood ; 132(19): 2026-2039, 2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30082494

RESUMO

The germinal center (GC) reaction plays an important role in generating humoral immunity and is believed to give rise to most B-cell lymphomas. GC entry and exit are tightly regulated processes, controlled by the actions of transcription factors such as BCL6. Herein, we demonstrate that protein arginine methyltransferase 5 (PRMT5), a symmetric dimethyl arginine methyltransferase, is also necessary for GC formation and affinity maturation. PRMT5 contributes to GC formation and affinity maturation at least in part through its direct interaction with and methylation of BCL6 at arginine 305 (R305), a modification necessary for the full transcriptional repressive effects of BCL6. Inhibition of PRMT5 in B-cell lymphoma lines led to significant upregulation of BCL6 target genes, and the concomitant inhibition of both BCL6 and PRMT5 exhibited synergistic killing of BCL6-expressing lymphoma cells. Our studies identify PRMT5 as a novel regulator of the GC reaction and highlight the mechanistic rationale of cotargeting PRMT5 and BCL6 in lymphoma.


Assuntos
Centro Germinativo/metabolismo , Linfoma/metabolismo , Mapas de Interação de Proteínas , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Centro Germinativo/citologia , Centro Germinativo/patologia , Humanos , Linfoma/genética , Linfoma/patologia , Camundongos Knockout , Proteína-Arginina N-Metiltransferases/genética , Proteínas Proto-Oncogênicas c-bcl-6/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...