Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 14(1): 7280, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949914

RESUMO

The combination of the ability to absorb most of the solar radiation and simultaneously suppress infrared re-radiation allows selective solar absorbers (SSAs) to maximize solar energy to heat conversion, which is critical to several advanced applications. The intrinsic spectral selective materials are rare in nature and only a few demonstrated complete solar absorption. Typically, intrinsic materials exhibit high performances when integrated into complex multilayered solar absorber systems due to their limited spectral selectivity and solar absorption. In this study, we propose CoSbx (2 < x < 3) as a new exceptionally efficient SSA. Here we demonstrate that the low bandgap nature of CoSbx endows broadband solar absorption (0.96) over the solar spectral range and simultaneous low emissivity (0.18) in the mid-infrared region, resulting in a remarkable intrinsic spectral solar selectivity of 5.3. Under 1 sun illumination, the heat concentrates on the surface of the CoSbx thin film, and an impressive temperature of 101.7 °C is reached, demonstrating the highest value among reported intrinsic SSAs. Furthermore, the CoSbx was tested for solar water evaporation achieving an evaporation rate of 1.4 kg m-2 h-1. This study could expand the use of narrow bandgap semiconductors as efficient intrinsic SSAs with high surface temperatures in solar applications.

3.
Nanoscale Adv ; 5(15): 3976-3984, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37496615

RESUMO

Functional 2D materials are interesting for a wide range of applications. The rapid growth of the MXene family is due to its compositional diversity, which, in turn, allows significant tuning of the properties, and hence their applicability. The properties are to a large extent dictated by surface terminations. In the present work, we demonstrate the influence of termination species (O, NH, N, S, F, Cl, Br, I) on the changes in electronic structure, work function, dynamical stability, and atomic charges and distances of MXenes (Ti2C, Nb2C, V2C, Mo2C, Ti3C2, and Nb4C3). Among these systems, the work function values were not previously reported for ∼60% of the systems, and most of the previously reported MXenes with semiconducting nature are here proven to be dynamically unstable. The results show that the work function generally decreases with a reduced electronegativity of the terminating species, which in turn is correlated to a reduced charge of both the metal and terminating species and an increased metal-termination distance. An exception to this trend is NH terminations, which display a significantly reduced work function due to an intrinsic dipole moment within the termination. Furthermore, the results suggest that halogen terminations improve the electrical conductivity of the materials.

4.
ACS Omega ; 8(16): 14484-14489, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37125128

RESUMO

Among the existing materials for heat conversion, high-entropy alloys are of great interest due to the tunability of their functional properties. Here, we aim to produce single-phase high-entropy oxides composed of Co-Cr-Fe-Mn-Ni-O through spark plasma sintering (SPS), testing their thermoelectric (TE) properties. This material was successfully obtained before via a different technique, which requires a very long processing time. Hence, the main target of this work is to apply spark plasma sintering, a much faster and scalable process. The samples were sintered in the temperature range of 1200-1300 °C. Two main phases were formed: rock salt-structured Fm3̅m and spinel-structured Fd3̅m. Comparable transport properties were achieved via the new approach: the highest value of the Seebeck coefficient reached -112.6 µV/K at room temperature, compared to -150 µV/K reported before; electrical properties at high temperatures are close to the properties of the single-phase material (σ = 0.2148 S/cm, σ ≈ 0.2009 S/cm reported before). These results indicate that SPS can be successfully applied to produce highly efficient TE high-entropy alloys in a fast and scalable way. Further optimization is needed for the production of single-phase materials, which are expected to exhibit an even better TE functionality.

5.
iScience ; 24(10): 103145, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34723162

RESUMO

Thermoelectric materials convert waste heat into electric energy. Oxyselenide-based material, specifically, p-type BiCuSeO, is one of the most promising materials for these applications. There are numerous approaches to improve the heat-to-electricity conversion performance. Usually, these approaches are applied individually, starting from the pure intrinsic material. Higher performance could, however, be reached by combining a few strategies simultaneously. In the current work, yttrium, niobium, and phosphorous substitutions on the bismuth sites in already bismuth-deficient Bi1-xCuSeO systems were investigated via density functional theory. The bismuth-deficient system was used as the reference system for further introduction of substitutional defects. The substitution with phosphorous showed a decrease of up to 40 meV (11%) in the energy gap between conduction and valence bands at the highest substitution concentration. Doping with niobium led to the system changing from a p-type to an n-type conductor, which provides a possible route to obtain n-type BiCuSeO systems.

6.
ACS Omega ; 6(2): 1073-1082, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33490766

RESUMO

Carbon nanotube/polymer composites have recently received considerable attention for thermoelectric (TE) applications. The TE power factor can be significantly improved by forming composites with carbon nanotubes. However, the formation of a uniform and well-ordered nanocomposite film is still challenging because of the creation of agglomerates and the uneven distribution of nanotubes. Here, we developed a facile, efficient, and easy-processable route to produce uniform and aligned nanocomposite films of P3HT and carbon nanotube forest (CNTF). The electrical conductivity of a pristine P3HT film was improved from ∼10-7 to 160 S/cm thanks to the presence of CNTF. Also, a further boost in TE performance was achieved using two additives, lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) and tert-butylpyridine. By adding the additives to P3HT, the degree of interchain order increased, which facilitated the charge transport through the composite. Under the optimal conditions, the incorporation of CNTF and additives led to values of the Seebeck coefficient, electrical conductivity, and power factor up to rising 92 µV/K, 130 S/cm, and 110 µW/m K2, respectively, at a temperature of 344.15 K. The excellent TE performance of the hybrid films originates from the dramatically increased electrical conductivity and the improved Seebeck coefficient by CNTF and additives, respectively.

7.
Inorg Chem ; 59(9): 6550-6565, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32282188

RESUMO

Graphene (G) and metal-decorated G nanocomposites are among the most promising materials for a wide variety of practical applications, and, therefore, the development of fast and reliable methods for nanocomposite synthesis is an important task. Herein we report the new fast approach for solution combustion synthesis (SCS) of large-area G-metallic nanocomposites in an air atmosphere. The G-based nanocomposites were obtained by a SCS using copper and nickel nitrates, as well as their stoichiometric mixture as the metal source and citric acid as a fuel and carbon source. The G structures started on the catalytic surface of freshly synthesized metallic nanograins during the combustion process and formed large-area free-standing films due to the high-energy and fast synthesis process. We proposed a mechanism of formation of the G-based nanocomposites. The phase compositions, structural features, and magnetization behavior of G@Cu, G@Ni, and G@CuNi nanocomposites are carefully studied and described. G@metal nanocomposites were studied as a material for the creation of a highly effective sensing element of semiconductor gas sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...