Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 13: 1346949, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38318325

RESUMO

Pediatric low-grade gliomas represent the most common childhood brain tumor class. While often curable, some tumors fail to respond and even successful treatments can have life-long side effects. Many clinical trials are underway for pediatric low-grade gliomas. However, these trials are expensive and challenging to organize due to the heterogeneity of patients and subtypes. Advances in sequencing technologies are helping to mitigate this by revealing the molecular landscapes of mutations in pediatric low-grade glioma. Functionalizing these mutations in the form of preclinical models is the next step in both understanding the disease mechanisms as well as for testing therapeutics. However, such models are often more difficult to generate due to their less proliferative nature, and the heterogeneity of tumor microenvironments, cell(s)-of-origin, and genetic alterations. In this review, we discuss the molecular and genetic alterations and the various preclinical models generated for the different types of pediatric low-grade gliomas. We examined the different preclinical models for pediatric low-grade gliomas, summarizing the scientific advances made to the field and therapeutic implications. We also discuss the advantages and limitations of the various models. This review highlights the importance of preclinical models for pediatric low-grade gliomas while noting the challenges and future directions of these models to improve therapeutic outcomes of pediatric low-grade gliomas.

2.
Nat Biotechnol ; 34(4): 419-23, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26928769

RESUMO

Hundreds of genetically characterized cell lines are available for the discovery of genotype-specific cancer vulnerabilities. However, screening large numbers of compounds against large numbers of cell lines is currently impractical, and such experiments are often difficult to control. Here we report a method called PRISM that allows pooled screening of mixtures of cancer cell lines by labeling each cell line with 24-nucleotide barcodes. PRISM revealed the expected patterns of cell killing seen in conventional (unpooled) assays. In a screen of 102 cell lines across 8,400 compounds, PRISM led to the identification of BRD-7880 as a potent and highly specific inhibitor of aurora kinases B and C. Cell line pools also efficiently formed tumors as xenografts, and PRISM recapitulated the expected pattern of erlotinib sensitivity in vivo.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Resistencia a Medicamentos Antineoplásicos/genética , Técnicas de Genotipagem/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias/classificação , Neoplasias/genética , Animais , Linhagem Celular Tumoral , Humanos , Camundongos
3.
Biochem Biophys Res Commun ; 397(4): 661-7, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20537980

RESUMO

Integral membrane lysophospholipid acyltransferases (AT) are involved in many reactions that produce phospholipids and triglycerides. Enzymes that utilize lysophosphatidic acid (LPA) as an acceptor substrate have been termed LPAATs, and several are members of the 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) gene family. Amino acid sequence comparisons with other acyltransferases reveal that AGPATs contain four conserved motifs (I-IV), whose invariant residues appear to be important for catalysis and/or substrate recognition. Although the enzymatic activities of many AGPATs are known, for many members their structural organization within membranes and their exact biological functions are unclear. Recently, a new function for AGPATs was discovered when it was determined that human AGPAT3/LPAAT3 is involved in the structure and function of the Golgi complex. Here we have determined the topological orientation of human AGPAT3/LPAAT3. AGPAT3/LPAAT3 possesses two transmembrane domains, one of which separates motifs I and II, which are thought to form a functional unit that is critical for enzymatic activity. This is a surprising result but similar to a recent study on the topology of human LPAAT 1. The data is consistent with a structural arrangement in which motif I is located in the cytoplasm and motif II is in the endoplasmic reticulum and Golgi lumen, suggesting a different model for AGPAT3/LPAAT3's enzymatic mechanism.


Assuntos
Aciltransferases/metabolismo , Membrana Celular/enzimologia , Aciltransferases/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Células Cultivadas , Citoplasma/enzimologia , Retículo Endoplasmático/enzimologia , Humanos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...