Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5424, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696785

RESUMO

Magnetic skyrmions, topologically-stabilized spin textures that emerge in magnetic systems, have garnered considerable interest due to a variety of electromagnetic responses that are governed by the topology. The topology that creates a microscopic gyrotropic force also causes detrimental effects, such as the skyrmion Hall effect, which is a well-studied phenomenon highlighting the influence of topology on the deterministic dynamics and drift motion. Furthermore, the gyrotropic force is anticipated to have a substantial impact on stochastic diffusive motion; however, the predicted repercussions have yet to be demonstrated, even qualitatively. Here we demonstrate enhanced thermally-activated diffusive motion of skyrmions in a specifically designed synthetic antiferromagnet. Suppressing the effective gyrotropic force by tuning the angular momentum compensation leads to a more than 10 times enhanced diffusion coefficient compared to that of ferromagnetic skyrmions. Consequently, our findings not only demonstrate the gyro-force dependence of the diffusion coefficient but also enable ultimately energy-efficient unconventional stochastic computing.

2.
Nat Commun ; 13(1): 3144, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668143

RESUMO

A key issue for skyrmion dynamics and devices are pinning effects present in real systems. While posing a challenge for the realization of conventional skyrmionics devices, exploiting pinning effects can enable non-conventional computing approaches if the details of the pinning in real samples are quantified and understood. We demonstrate that using thermal skyrmion dynamics, we can characterize the pinning of a sample and we ascertain the spatially resolved energy landscape. To understand the mechanism of the pinning, we probe the strong skyrmion size and shape dependence of the pinning. Magnetic microscopy imaging demonstrates that in contrast to findings in previous investigations, for large skyrmions the pinning originates at the skyrmion boundary and not at its core. The boundary pinning is strongly influenced by the very complex pinning energy landscape that goes beyond the conventional effective rigid quasi-particle description. This gives rise to complex skyrmion shape distortions and allows for dynamic switching of pinning sites and flexible tuning of the pinning.

3.
Sensors (Basel) ; 20(15)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759802

RESUMO

We analyzed the influence of parameters of deep levels in the bulk and conditions on the surface on transient charge responses of semi-insulating samples (CdTe and GaAs). We studied the dependence on the applied bias step used for the experimental evaluation of resistivity in contactless measurement setups. We used simulations based on simultaneous solutions of 1D drift diffusion and Poisson's equations as the main investigation tool. We found out that the resistivity can be reliably determined by the transient contactless method in materials with a large density of deep levels in the bulk (e.g., semi-insulating GaAs) when the response curve is described by a single exponential. In contrast, the materials with the low deep-level density, like semiconductor radiation detector materials (e.g., CdTe, CdZnTe, etc.), usually exhibit a complex response to applied bias, depending on the surface conditions. We show that a single exponential fit does not represent the true relaxation time and resistivity, in this case. A two-exponential fit can be used for a rough estimate of bulk material resistivity only in a limit of low-applied bias, when the response curve approaches a single-exponential shape. A decreasing of the bias leads to a substantially improved agreement between the evaluated and true relaxation time, which is also consistent with the approaching of the relaxation curve to the single-exponential shape.

4.
Materials (Basel) ; 13(3)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033201

RESUMO

Fe75-xMn25Gax Heusler-like compounds were investigated in a wide range of Fe/Ga ratios while keeping the Mn content constant and equal 25 at% in order to elucidate the interplay between magnetic properties and composition. Materials were prepared by arc-melting from pure elements and subsequently annealed. Experimental investigations were focused on magnetization behavior in a wide temperature range from 4 to 1000 K and magnetic field up to 9 T. Optical and magneto-optical (MO) measurements were employed to shed more light on the magnetic state and electronic structure of investigated materials. Magnetization measurements indicated that in the vicinity of stoichiometry (Fe2MnGa) the compounds are ferro/ferrimagnetic, whereas the Fe-deficient compound is paramagnetic and at high Fe concentration the antiferromagnetic interaction prevails. Theoretical calculations of corresponding ordered and disordered stoichiometric compounds were carried out and compared to the experiment on the level of net magnetic moment as well as magneto-optical spectra. This comparison suggests that the Heusler crystal structure, L21, is not present even close to stoichiometry. Moreover, the comparison of density of states (DOS) for ordered and disordered structures allowed us to explain missing martensitic transformation (MT) in investigated materials.

5.
Sci Rep ; 9(1): 16547, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31719549

RESUMO

Unlike ferromagnetic materials, ferrimagnetic metals have recently received considerable attention due to their bulk perpendicular magnetic anisotropy, low net magnetization and tunable magnetic properties. This makes them perfect candidates for the research of recently discovered spin-torque related phenomena. Among other ferrimagnetic metals, GdFe has an advantage in relatively large magnetic moments in both sublattices and tunability of compensation point above the room temperature by small changes in its composition. We present a systematic study of optical and magneto-optical properties of amorphous GdxFe(100-x) thin films of various compositions (x = 18.3, 20.0, 24.7, 26.7) prepared by DC sputtering on thermally oxidized SiO2 substrates. A combination of spectroscopic ellipsometry and magneto-optical spectroscopy in the photon energy range from 1.5 to 5.5 eV with advanced theoretical models allowed us to deduce the spectral dependence of complete permittivity tensors across the compensation point. Such information is important for further optical detection of spin related phenomena driven by vicinity of compensation point in nanostructures containing GdFe.

6.
Sci Rep ; 9(1): 7303, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086249

RESUMO

X- and gamma-ray detectors have broad applications ranging from medical imaging to security, non-proliferation, high-energy physics and astrophysics. Detectors with high energy resolution, e.g. less than 1.5% resolution at 662 keV at room temperature, are critically important in most uses. The efficacy of adding selenium to the cadmium zinc telluride (CdZnTe) matrix for radiation detector applications has been studied. In this paper, the growth of a new quaternary compound Cd0.9Zn0.1Te0.98Se0.02 by the Traveling Heater Method (THM) is reported. The crystals possess a very high compositional homogeneity with less extended defects, such as secondary phases and sub-grain boundary networks. Virtual Frisch-grid detectors fabricated from as-grown ingots revealed ~0.87-1.5% energy resolution for 662-keV gamma rays. The superior material quality with a very low density of defects and very high compositional homogeneity heightens the likelihood that Cd0.9Zn0.1Te0.98Se0.02 will be the next generation room-temperature detector material.

7.
Nat Nanotechnol ; 14(7): 658-661, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31011220

RESUMO

Magnetic skyrmions in thin films can be efficiently displaced with high speed by using spin-transfer torques1,2 and spin-orbit torques3-5 at low current densities. Although this favourable combination of properties has raised expectations for using skyrmions in devices6,7, only a few publications have studied the thermal effects on the skyrmion dynamics8-10. However, thermally induced skyrmion dynamics can be used for applications11 such as unconventional computing approaches12, as they have been predicted to be useful for probabilistic computing devices13. In our work, we uncover thermal diffusive skyrmion dynamics by a combined experimental and numerical study. We probed the dynamics of magnetic skyrmions in a specially tailored low-pinning multilayer material. The observed thermally excited skyrmion motion dominates the dynamics. Analysing the diffusion as a function of temperature, we found an exponential dependence, which we confirmed by means of numerical simulations. The diffusion of skyrmions was further used in a signal reshuffling device as part of a skyrmion-based probabilistic computing architecture. Owing to its inherent two-dimensional texture, the observation of a diffusive motion of skyrmions in thin-film systems may also yield insights in soft-matter-like characteristics (for example, studies of fluctuation theorems, thermally induced roughening and so on), which thus makes it highly desirable to realize and study thermal effects in experimentally accessible skyrmion systems.

8.
Adv Mater ; 30(49): e1805461, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30368960

RESUMO

Magnetic skyrmions promise breakthroughs in future memory and computing devices due to their inherent stability and small size. Their creation and current driven motion have been recently observed at room temperature, but the key mechanisms of their formation are not yet well-understood. Here it is shown that in heavy metal/ferromagnet heterostructures, pulsed currents can drive morphological transitions between labyrinth-like, stripe-like, and skyrmionic states. Using high-resolution X-ray microscopy, the spin texture evolution with temperature and magnetic field is imaged and it is demonstrated that with transient Joule heating, topological charges can be injected into the system, driving it across the stripe-skyrmion boundary. The observations are explained through atomistic spin dynamic and micromagnetic simulations that reveal a crossover to a global skyrmionic ground state above a threshold magnetic field, which is found to decrease with increasing temperature. It is demonstrated how by tuning the phase stability, one can reliably generate skyrmions by short current pulses and stabilize them at zero field, providing new means to create and manipulate spin textures in engineered chiral ferromagnets.

9.
Sci Technol Adv Mater ; 17(1): 792-798, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27933118

RESUMO

We studied the growth of the surface oxide layer on four different CdTe and CdZnTe X-ray and gamma-ray detector-grade samples using spectroscopic ellipsometry. We observed gradual oxidization of CdTe and CdZnTe after chemical etching in bromine solutions. From X-ray photoelectron spectroscopy measurements, we found that the oxide consists only of oxygen bound to tellurium. We applied a refined theoretical model of the surface layer to evaluate the spectroscopic ellipsometry measurements. In this way we studied the dynamics and growth rate of the oxide layer within a month after chemical etching of the samples. We observed two phases in the evolution of the oxide layer on all studied samples. A rapid growth was visible within five days after the chemical treatment followed by semi-saturation and a decrease in the growth rate after the first week. After one month all the samples showed an oxide layer about 3 nm thick. The oxide thickness was correlated with leakage current degradation with time after surface preparation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...