Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Electr Bioimpedance ; 12(1): 34-49, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34966467

RESUMO

We present here the first impedance-based characterization of the differentiation process of two human mesencephalic fetal neural stem lines. The two dopaminergic neural stem cell lines used in this study, Lund human mesencephalic (LUHMES) and human ventral mesencephalic (hVM1 Bcl-XL), have been developed for the study of Parkinsonian pathogenesis and its treatment using cell replacement therapy. We show that if only relying on impedance magnitude analysis, which is by far the most usual approach in, e.g., cytotoxicity evaluation and drug screening applications, one may not be able to distinguish whether the neural stem cells in a population are proliferating or differentiating. However, the presented results highlight that equivalent circuit analysis can provide detailed information on cellular behavior, e.g. simultaneous changes in cell morphology, cell-cell contacts, and cell adhesion during formation of neural projections, which are the fundamental behavioral differences between proliferating and differentiating neural stem cells. Moreover, our work also demonstrates the sensitivity of impedance-based monitoring with capability to provide information on changes in cellular behavior in relation to proliferation and differentiation. For both of the studied cell lines, in already two days (one day after induction of differentiation) equivalent circuit analysis was able to show distinction between proliferation and differentiation conditions, which is significantly earlier than by microscopic imaging. This study demonstrates the potential of impedance-based monitoring as a technique of choice in the study of stem cell behavior, laying the foundation for screening assays to characterize stem cell lines and testing the efficacy epigenetic control.

2.
Analyst ; 140(10): 3623-9, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25868456

RESUMO

We investigated the combined effect of the initial cell density (12,500, 35,000, 75,000, and 100,000 cells cm(-2)) and concentration of the anti-cancer drug doxorubicin on HeLa cells by performing time-dependent cytotoxicity assays using real-time electrochemical impedance spectroscopy. A correlation between the rate of cell death and the initial cell seeding density was found at 2.5 µM doxorubicin concentration, whereas this was not observed at 5 or 100 µM. By sensing the changes in the cell-substrate interaction using impedance spectroscopy under static conditions, the onset of cytotoxicity was observed 5 h earlier than when using a standard colorimetric end-point assay (MTS) which measures changes in the mitochondrial metabolism. Furthermore, with the MTS assay no cytotoxicity was observed after 15 h of incubation with 2.5 µM doxorubicin, whereas the impedance showed at this time point cell viability that was below 25%. These results indicate that impedance detection reveals cytotoxic events undetectable when using the MTS assay, highlighting the importance of combining impedance detection with traditional drug toxicity assays towards a more in depth understanding of the effect of anti-cancer drugs on in vitro assays. Moreover, the detection of doxorubicin induced toxicity determined with impedance under static conditions proved to be 6 times faster than in perfusion culture.


Assuntos
Antineoplásicos/farmacologia , Espectroscopia Dielétrica/métodos , Doxorrubicina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Contagem de Células , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Fatores de Tempo
3.
J Neural Transm (Vienna) ; 112(11): 1433-45, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15785858

RESUMO

The neuroprotective effect of the antiparkinsonian monoamine oxidase (MAO)-B inhibitor, R-(-)-deprenyl has been under investigation for years. Cytoskeleton, a main component of cell adhesion, is involved in the development of R-(-)-deprenyl-responsive diseases, the effect of the drug on cell adhesion, however, is not known. We examined the effect of R-(-)-deprenyl on cell-cell adhesion of neuronal and non-neuronal cells. R-(-)-deprenyl treatment resulted in a cell type- and concentration-dependent increase in cell-cell adhesion of PC12 and NIH3T3 cells at concentrations lower than those required for MAO-B inhibition, while S-(+)-deprenyl was not effective. This acitvity of R-(-)-deprenyl was not prevented by the cytochrome P-450 inhibitor, SKF525A, while deprenyl-N-oxide, a newly described metabolite, also induced an increase in cell-cell adhesion. The effect of R-(-)-deprenyl was not reversible during a 24-hour recovery period. In summary, we described a new, MAO-B independent effect of R-(-)-deprenyl on cell-cell adhesion which can contribute to its neuroprotective function.


Assuntos
Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Selegilina/farmacologia , Animais , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/fisiologia , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/metabolismo , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Camundongos , Inibidores da Monoaminoxidase/farmacologia , Células NIH 3T3 , Neurônios/metabolismo , Células PC12 , Proadifeno/farmacologia , Ratos , Selegilina/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...