Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37969068

RESUMO

Modern medicine has taken energy loss during cilia beating in the human stomach, which under some circumstances causes blood flow to become acidic, very seriously. In current report covering a whole advancement and results for the impact of Rabinowitsch model with cilia-driven flow analysis with the help of ciliary beating in a cylindrical tube. The fluid is incompressible, and layers of fluid do not mix. The fluid flow with heat and mass transfer is firstly modeled in wave and then transformed into fixed frame. Exact solutions for stresses, temperature velocity, and concentration profiles whereas numerical pressure rise is obtained subject to relevant boundary conditions. The behavior of incipient parameters is shown graphically (plotted in MATHEMATICA 13.0) in the results section. The key findings obtained from graphical results show that maximum magnitude for velocity and temperature is achieved in middle layer of fluid whereas in the outer layer concentration profile is maximum. The current study may help researchers to develop new treatments for diseases such as cystic fibrosis, in which impaired ciliary function leads to mucus accumulation in the lungs. The attained exact and numerical outcomes are novel and offered here for first time in literature.

2.
Nanomaterials (Basel) ; 12(7)2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35407325

RESUMO

A numerical investigation of three-dimensional hybrid nanomaterial micropolar fluid flow across an exponentially stretched sheet is performed. Recognized similarity transformations are adopted to convert governing equations from PDEs into the set ODEs. The dimensionless system is settled by the operating numerical approach bvp4c. The impacts of the nanoparticle volume fraction, dimensionless viscosity ratio, stretching ratio parameter, and dimensionless constant on fluid velocity, micropolar angular velocity, fluid temperature, and skin friction coefficient in both x-direction and y-direction are inspected. Graphical outcomes are shown to predict the features of the concerned parameters into the current problem. These results are vital in the future in the branches of technology and industry. The micropolar function Rη increases for higher values of the micropolar parameter and nanoparticle concentration. Micropolar function Rη declines for higher values of the micropolar parameter and nanoparticle concentration. Temperature function is enhanced for higher values of solid nanoparticle concentration. Temperature function declines for higher values of the micropolar parameter. The range of the physical parameters are presented as: 0.005<ϕ2<0.09, Pr=6.2, 0

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA