Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Chem ; 11: 1269911, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38099192

RESUMO

Objective: Although radiation workers are exposed to much lower doses of neutron-γ rays than those suffered in nuclear explosions and accidents, it does not mean that their health is not affected by radiation. Lower doses of radiation do not always cause morphological aberrations in chromosomes, so more sophisticated tests must be sought to specific alterations in the exposed cells. Our goal was to characterize the specific gene expression in lymphocytes from logging workers who were continuously exposed to low doses of neutron-γ radiation. We hypothesized that the combination of cell type-specific transcriptomes and open chromatin profiles would identify lymphocyte-specific gene alterations induced by long-term radiation with low-dose neutron-γ-rays and discover new regulatory pathways and transcriptional regulatory elements. Methods: Lymphocytes were extracted from workers who have been occupationally exposed to neutron-γ and workers unexposed to radiation in the same company. mRNA-seq and ATAC-seq (Assay for Transposase-Accessible Chromatin with high-throughput sequencing) were performed, followed integrative analysis to identify specific gene regulatory regions induced by neutron-γ radiation. A qPCR assay was then performed to verify the downregulation of RNA coding for ribosomal proteins and flow cytometry was used to detect ribosomal protein expression and cell cycle alterations. Results: We identified transcripts that were specifically induced by neutron-γ radiation and discovered differential open chromatin regions that correlated with these gene activation patterns. Notably, we observed a downward trend in the expression of both differentially expressed genes and open chromatin peaks. Our most significant finding was that the differential peak upregulated in ATAC-seq, while the differential gene was downregulated in the ribosome pathway. We confirmed that neutron-γ radiation leads to transcriptional inhibition by analyzing the most enriched promoters, examining RPS18 and RPS27A expression by qPCR, and analyzing protein-protein interactions of the differential genes. Ribosomal protein expression and cell cycle were also affected by neutron-γ as detected by flow cytometry. Conclusion: We have comprehensively analyzed the genetic landscape of human lymphocytes based on chromatin accessibility and transcript levels, enabling the identification of novel neutron-γ induced signature genes not previously known. By comparing fine-mapping of open chromatin and RNA reads, we have determined that neutron-γ specifically leads to downregulation of genes in the ribosome pathway, with pseudogenes potentially playing a crucial role.

2.
Toxicol Res (Camb) ; 12(5): 943-953, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37915496

RESUMO

Background: A causal relationship between occupational radon exposure in underground miners and lung cancer risk has been demonstrated through large cohort epidemiological studies. However, the mechanisms by which radon exposure causes adverse effects on lung tissue remain unclear. Epigenetic alterations such as DNA methylation may provide new insights into interactions at molecular levels induced by prolonged radon exposure. Methods: We used the Illumina Infinium Human Methylation 850 K BeadChip to detect and compare genome-wide DNA methylation profiles in peripheral blood samples from underground miners (n = 14) and aboveground workers (n = 9). Results: The average concentration of radon in underground workplaces was significantly higher than that of aboveground places (1,198 Bq·m-3 vs 58 Bq·m-3, p < 0.001). A total of 191 differentially methylated positions (DMPs) corresponding to 104 hub genes were identified when |Δß| ≥ 0.1 and p < 0.05, with 107 hypermethylated sites and 84 hypomethylated sites. GO and KEGG analysis revealed that differentially methylated genes between underground miners and aboveground workers were prominently enriched in pathways/networks involved in neurotransmitter regulation, immunomodulatory effects and cell adhesion ability. Furthermore, methylation changes of selected genes FERMT1, ALCAM, HLA-DPA1, PON1 and OR2L13 were validated by pyrosequencing, which may play vital roles in these biological processes induced by radon. Conclusion: In summary, the DNA methylation pattern of the underground miners exposed to radon was distinct from that of the aboveground workers. Such abnormalities in the genomic DNA methylation profile associated with prolonged radon exposure are worth studying in terms of neuro- and immune-system regulation, as well as cell adhesion ability in the future.

3.
ACS Sens ; 8(10): 3952-3963, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37801040

RESUMO

Developing a respiratory analysis disease diagnosis platform for the H2S biomarker has great significance for the real-time detection of various diseases. However, achieving highly sensitive and rapid detection of H2S gas at the parts per billion level at low temperatures is one of the most critical challenges for developing portable exhaled gas sensors. Herein, Cu2O-multiwalled carbon nanotube (MWCNT) heterostructures with excellent gas sensitivity to H2S at room temperature and a lower temperature were successfully synthesized by a facile two-dimensional (2D) electrodeposition in situ assembly method. The combination of Cu2O and MWCNTs via the principle of optimal conductance growth not only reduced the initial resistance of the material but also provided an ideal interfacial barrier structure. Compared to the response of the pure Cu2O sensor, that of the Cu2O-MWCNT sensor to 1 ppm of H2S increased nearly 800 times at room temperature, and the response time decreased by more than 500 s. In addition to the excellent sensitivity with detection limits as low as 1 ppb, the Cu2O-MWCNT sensor was extremely selective with low-temperature adaptability. The sensor had a response value of 80.6 to 0.1 ppm of H2S at -10 °C, which is difficult to achieve with sensors based on oxygen adsorption/desorption mechanisms. The sensor was used for the detection of real oral exhaled breath, confirming its feasibility as a real-time disease monitoring sensor. The Cu2O-MWCNT heterostructures maximized the advantages of the individual components and laid the experimental foundation for future applications of highly sensitive portable breath analysis platforms for monitoring H2S.


Assuntos
Líquidos Corporais , Nanotubos de Carbono , Adsorção , Testes Respiratórios , Temperatura Baixa
4.
Artigo em Inglês | MEDLINE | ID: mdl-37770140

RESUMO

In China, according to statistics about underground non-uranium mine radon levels, 15% exceed the national standard intervention level of 1000 Bq/m3, and some mines may exceed 10,000 Bq/m3. The relationship between radon exposure in underground miners and lung cancer has already been established, but the mechanisms and biological processes underlying it are poorly understood. In order to identify the genome-wide DNA methylation profile associated with long-term radon exposure, we performed the Infinium Human Methylation 850 K BeadChip measurement in whole blood samples obtained from 15 underground non-uranium miners and 10 matched aboveground control workers. Radon concentrations in the air of workplaces and living environments were measured by CR-39 radon detectors, and annual effective doses were calculated using the detection data. Under the high radon concentration with an average value of 12,700 Bq·m-3, a total of 165 significant differentially methylated positions (127 hypermethylated sites and 38 hypomethylated sites) annotated to 71 genes were identified in underground miners (|Δß| ≥ 0.10, p < 0.05), and the average DNA methylation level of 165 DMPs was significantly higher than that of the control workers. Most DMPs were found on chromosome 1, and approximately one-quarter of them were located in genomic promoter regions. Through bioinformatics analysis and pyrosequencing validation, five candidate genes differentially methylated by radon, including TIMP2, EMP2, CPT1B, AMD1 and SLC43A2 were identified. GO and KEGG analysis implicated that long term radon exposure could induce the lung cancer related biological processes such as cell adhesion and cellular polarity maintenance. Our study provides evidence for the alterations of genome-wide DNA methylation profiles induced by long-term high level radon exposure, and new insights into searching for carcinogenic biomarkers of high radon exposure in future studies.


Assuntos
Neoplasias Pulmonares , Mineradores , Exposição Ocupacional , Radônio , Humanos , Metilação de DNA , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Radônio/toxicidade , Radônio/análise , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , DNA , Glicoproteínas de Membrana/genética
5.
JACS Au ; 3(2): 402-408, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36873701

RESUMO

External mechanical stress alters the nature of chemical bonds and triggers novel reactions, providing interesting synthetic protocols to supplement traditional solvent- or thermo-based chemical approaches. The mechanisms of mechanochemistry have been well studied in organic materials made of a carbon-centered polymeric framework and covalence force field. They convert stress into anisotropic strain which will engineer the length and strength of targeted chemical bonds. Here, we show that by compressing silver iodide in a diamond anvil cell, the external mechanical stress weakens the Ag-I ionic bonds and activate the global diffusion of super-ions. In contrast to conventional mechanochemistry, mechanical stress imposes unbiased influence on the ionicity of chemical bonds in this archetypal inorganic salt. Our combined synchrotron X-ray diffraction experiment and first-principles calculation demonstrate that upon the critical point of ionicity, the strong ionic Ag-I bonds break down, leading to the recovery of elemental solids from a decomposition reaction. Instead of densification, our results reveal the mechanism of an unexpected decomposition reaction through hydrostatic compression and suggest the sophisticated chemistry of simple inorganic compounds under extreme conditions.

6.
Nanoscale Adv ; 5(6): 1784-1794, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36926557

RESUMO

2D heterostructure nanoarrays have emerged as a promising sensing material for rapid disease detection applications. In this study, a bio-H2S sensor based on Cu2O/Co3O4 nanoarrays was proposed, the controllable preparation of the nanoarrays being achieved by exploring the experimental parameters of the 2D electrodeposition in situ assembly process. The nanoarrays were designed as a multi-barrier system with strict periodicity and long-range order. Based on the interfacial conductance modulation and vulcanization reaction of Cu2O and Co3O4, the sensor exhibited superior sensitivity, selectivity, and stability to H2S in human blood. In addition, the sensor exhibited a reasonable response to 0.1 µmol L-1 Na2S solution, indicating that it had a low detection limit for practical applications. Moreover, first-principles calculations were performed to study changes in the heterointerface during the sensing process and the mechanism of rapid response of the sensor. This work demonstrated the reliability of Cu2O/Co3O4 nanoarrays applied in portable sensors for the rapid detection of bio-H2S.

7.
ACS Sens ; 7(7): 1903-1911, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35729782

RESUMO

Magnetism is a promising external intervention for gas sensitivity based on a heterogeneous interfacial structure caused by the regulation of the heterogeneous interface conductivity and the surface oxygen adsorption. In this study, Cu2O/NiO heterostructure-ordered nanoarrays were prepared with a two-dimensional (2D) electrodeposition in situ assembly method for H2S gas detection at room temperature under the action of a magnetic field. The nanoarrays were multibarrier structures with a strictly periodic structure that was greater than hundreds of microns in size. The experimental data confirmed that the response of 50 ppm of H2S based on the nanoarrays was improved by nearly 61% with a relatively weak magnetic field. Particularly at a low concentration (≤20 ppm), the effect of the magnetic field enhancement on the sensitivity was more obvious. We attributed the enhancement of the gas sensitivity with the magnetic field to the regulation of the Cu2O-NiO interface conductance and the surface oxygen adsorption. This study demonstrated that a magnetic field could significantly enhance the gas sensitivity based on heterostructures. Results of this study provide an important reference for the application of magnetism in gas detection and the design of new gas-sensitive materials.


Assuntos
Campos Magnéticos , Oxigênio , Fenômenos Magnéticos
8.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-965604

RESUMO

Abstract@#As part of the human environment, ionizing radiation can produce adverse tissue reactions known as determinist- ic effects at sufficiently high exposure levels, and cause stochastic effects (cancer and genetic diseases), where single cells with mutations can trigger somatic or genetic effects, even at low exposure levels. Given the unfavorable health effects of ra- diation, a comprehensive technical report is warranted to address the measurement and control of radiation exposure levels. The Assessment of Prospective Cancer Risks from Occupational Exposure to Ionizing Radiation published by the Internation- al Atomic Energy Agency fills this gap. This paper outlines the methodology of prospective cancer risk assessment for work- ers occupationally exposed to radiation, which provides a flexible framework based on radiobiology, risk modeling, and epi- demiological data and a new tool for managing occupational radiation exposure and assessing potential risks from occupa- tional radiation exposure.

9.
RSC Adv ; 10(14): 8332-8339, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35497864

RESUMO

2D heterostructures are promising gas sensor materials due to their surface/interface effects and hybrid properties. In this research, Cu2O/Fe2O3 heterostructure ordered arrays were synthesized using an in situ electrodeposition method for H2S detection at low temperatures. These arrays possess a periodic long range ordered structure with horizontal multi-heterointerfaces, leading to superior gas sensitivity for synergistic effects at the heterointerfaces. The sensor based on the Cu2O/Fe2O3 heterostructure ordered arrays exhibits a dramatic improvement in H2S detection at low temperatures (even as low as -15 °C). The response is particularly significant at room and human body temperatures since the conductivity of the arrays can change by up to three orders of magnitude in a 10 ppm H2S atmosphere. These good performances are also attributed to the formation of metallic Cu2S conducting channels. Our results imply that the Cu2O/Fe2O3 heterostructure ordered arrays are promising candidates for high-performance H2S gas sensors that function at low temperatures as well as breath analysis systems for disease diagnosis.

10.
Micromachines (Basel) ; 9(12)2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30572629

RESUMO

The nanostructures with uniform long-range ordered structure are of crucial importance for performance standardization of high-quality surface-enhanced Raman scattering (SERS) spectra. In this paper, we described the fabrication and SERS properties of Au decorated Cu (Au@Cu) nanoarrays. The Cu nanoarrays with uniform long-range ordered structure were first synthesized by in-situ electrochemistry assembly on insulated substrate. The Cu nanoarrays can reach a size of centimeters with strictly periodic nano-microstructure, which is beneficial for the production and performance standardization of SERS substrates. Then Au nanoparticals were decorated on the Cu nanoarrays by galvanic reaction without any capping agent. The obtained Au@Cu nanoarrays exhibit excellent SERS activity for 4-Mercaptopyridine, and the sensitivity limit is as low as 10-8 M. Therefore, this facile route provides a useful platform for the fabrication of SERS substrates based on nano ordered arrays.

11.
Phys Chem Chem Phys ; 20(46): 29131-29141, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30426988

RESUMO

In this paper, we performed density functional theory (DFT) calculations to investigate the geometric structures, electronic structures and visible-light absorbance of MoS2/AlN heterostructure based on van der Waals interaction. The calculated formation energy indicated that the designed MoS2/AlN heterostructure could be experimentally prepared. The Mo-N stacked MoS2/AlN heterostructure exhibited more considerable optical absorption in visible-light region than MoS2 and AlN monolayers. More interestingly, the band gaps were sensitive to strain, which led to an obvious shift of optical absorption spectra along the direction of the infrared region. The two most energetically favorable twisted MoS2/AlN heterostructures (Mo-N and Mo-HAl) had similar band structures, which were different from the non-twisted MoS2/AlN heterostructure. With different rotation angles, their band structures all exhibited an indirect band gap and almost had the same values of indirect band gaps, indicating that the indirect band gaps had no clear dependence on rotation angles.

12.
Sci Rep ; 7(1): 17089, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29213076

RESUMO

The researches for new quantum spin Hall (QSH) insulators with large bulk energy gap are of much significance for their practical applications at room temperature in electronic devices with low-energy consumption. By means of first-principles calculations, we proposed that methyl-decorated stanene (SnCH3) film can be tuned into QSH insulator under critical tensile strain of 6%. The nonzero topological invariant and helical edge states further confirm the nontrivial nature in stretched SnCH3 film. The topological phase transition originates from the s-p xy type band inversion at the Γ point with the strain increased. The spin-orbital coupling (SOC) induces a large band gap of ~0.24 eV, indicating that SnCH3 film under strain is a quite promising material to achieve QSH effect. The proper substrate, h-BN, finally is presented to support the SnCH3 film with nontrivial topology preserved.

13.
Sci Rep ; 7: 43887, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28252012

RESUMO

Gas sensors with high sensitivity at and below room temperature, especially below freezing temperature, have been expected for practical application. The lower working temperature of gas sensor is better for the manufacturability, security and environmental protection. Herein, we propose a H2S gas sensor with high sensitivity at and below room temperature, even as low as -30 °C, based on Cu2O/Co3O4 nano/microstructure heteroarrays prepared by 2D electrodeposition technique. This heteroarray was designed to be a multi-barrier system, and which was confirmed by transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy and scanning probe microscopy. The sensor demonstrates excellent sensitivity, sub-ppm lever detection, fast response, and high activity at low temperature. The enhanced sensing property of sensor was also discussed with the Cu2O/Co3O4 p-p heterojunction barrier modulation and Cu2S conductance channel. We realize the detection of the noxious H2S gas at ultra-low temperature in a more security and environmental protection way.

14.
Sci Rep ; 6: 28487, 2016 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-27340091

RESUMO

Based on first-principles calculations, the electronic and topological properties of halogenated (F-, Cl-, Br- and I-) arsenene are investigated in detail. It is found that the halogenated arsenene sheets show Dirac type characteristic in the absence of spin-orbital coupling (SOC), whereas energy gap will be induced by SOC with the values ranging from 0.194 eV for F-arsenene to 0.255 eV for I-arsenene. Noticeably, these four newly proposed two-dimensional (2D) systems are verified to be quantum spin Hall (QSH) insulators by calculating the edge states with obvious linear cross inside bulk energy gap. It should be pointed out that the large energy gap in these 2D materials consisted of commonly used element is quite promising for practical applications of QSH insulators at room temperature.

15.
Phys Chem Chem Phys ; 18(16): 10918-23, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27040464

RESUMO

Heterostructure materials with a strictly periodic arrangement in hundreds of microns based on tunneling modulation are ideal candidates for micro-nanodevice applications. In this paper, we propose a Cu2O/SnO2 periodical heterostructure film, which is prepared by electrochemical deposition in a quasi-2D ultra-thin liquid layer. The surface morphology and the component of the film were analyzed by scanning electron microscopy (SEM), scanning probe microscopy (SPM) and transmission electron microscopy (TEM). The influences of frequency and amplitude of periodic deposition potential on the morphology and regular distribution of the interface were studied. The photoresponsivity of this material was researched, and the response behaviors for different illumination conditions were recorded carefully. Based on the tunneling modulation mechanism, it exhibits reasonable photoresponsivity to UV light.

16.
Phys Chem Chem Phys ; 17(40): 26979-87, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26407092

RESUMO

From first-principles calculations, the effects of h-BN and AlN substrates on the topological nontrivial properties of stanene are studied with different strains. We find that the quantum spin Hall phase can be induced in stanene film on a h-BN substrate under a tensile strain of between 6.0% and 9.3% with a stable state confirmed by the phonon spectrum, while for stanene on 5 × 5 h-BN, the quantum spin Hall phase can be preserved without strain. However, for stanene on a AlN substrate, the quantum spin Hall phase cannot be found under compressive or tensile strains less than 10%, while for 2 × 2 stanene on 3 × 3 AlN, the compressive strain needed to induce the quantum spin Hall phase is just 2%. These theoretical results will be helpful in understanding the effect of substrate and strain on stanene and in further realizing the quantum spin Hall effect in stanene on semiconductor substrates.

17.
Phys Chem Chem Phys ; 17(5): 3577-83, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25537553

RESUMO

Based on first-principles calculations, we systematically investigated the topological surface states of Bi and Sb thin films of 1-5 bilayers in (111) orientation without and with H(F) adsorption, respectively. We find that compared with clean Bi and Sb films, a huge band gap advantageous to observe the quantum spin Hall effect can be opened in chemically decorated bilayer Bi and Sb films, and the quantum phase transition from trivial (non-trivial) to non-trivial (trivial) phase is induced for a three bilayer Bi film and single (four) bilayer Sb film. Surface adsorption is an effective tool to manipulate the geometry, electronic structures and topological properties of film materials.

18.
Phys Chem Chem Phys ; 16(32): 17206-12, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25012680

RESUMO

We investigated the behavior of edge states in two-dimensional bilayered Bi nanoribbons by atom adsorption based on the density functional method. We found that for a clean Bi zigzag ribbon the penetration depth of well-localized edge states is a function of the momentum-space width of the edge-state dispersion. Depending on the density of adsorbed H, Br and I atoms, respectively, the edge state can be changed from localized within a very narrow region to delocalized over the whole region in real space. Changes in atomic and electronic structures and topological insulator properties associated with the atomic adsorption on the edges of zigzag bilayer nanoribbon (ZBNR) are discussed. Our work suggests that ZBNR could be a possible candidate for nanoelectronic devices under some special conditions.

19.
Nanoscale ; 6(10): 5343-50, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24699872

RESUMO

A nontoxic, simple, inexpensive, and reproducible strategy, which meets the standard of green chemistry, is introduced for the synthesis of copper nanocrystals (Cu NCs) with olive oil as both reducing agent and capping agent. By changing the reaction parameters, the shape, size and surface structure of the Cu NCs can be well controlled. The obtained Cu nanocubes show excellent catalytic properties for the catalytic reduction of dyes and CO oxidation. Moreover, the prepared Cu nanocubes as substrates exhibit surface enhanced Raman scattering (SERS) activity for 4-mercaptopyridine (4-Mpy). Therefore, this facile route provides a useful platform for the fabrication of Cu NCs which have the potential to replace noble metals for certain applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...