Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 126(33): 6125-6135, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35973006

RESUMO

We investigate the interplay between adsorption and transport in a two-dimensional porous medium by means of an extended Lattice Boltzmann technique within the Two-Relaxation-Time framework. We focus on two canonical adsorption thermodynamics and kinetics formalisms: (1) the Henry model in which the adsorbed amount scales linearly with the free adsorbate concentration and (2) the Langmuir model that accounts for surface saturation upon adsorption. We simulate transport of adsorbing and nonadsorbing particles to investigate the effect of the adsorption/desorption ratio k, initial free adsorbate concentration c0, surface saturation Γ∞, and Peclet numbers Pe on their dispersion behavior. In all cases, despite marked differences between the different adsorption models, the three following transport regimes are observed: diffusion-dominated regime, transient regime and Gaussian or nearly Gaussian dispersion regime. On the one hand, at short times, the intermediate transient regime strongly depends on the system's parameters with the shape of the concentration field at a given time being dependent on the amount of particles adsorbed shortly after injection. On the other hand, at longer times, the influence of the initial condition attenuates as particles sample sufficiently the adsorbed and nonadsorbed states. Once such dynamical equilibrium is reached, transport becomes Gaussian (i.e., normal) or nearly Gaussian in the asymptotic regime. Interestingly, the characteristic time scale to reach equilibrium, which varies drastically with the system's parameters, can be much longer than the actual simulation time. In practice, such results reflect many experimental situations such as in water treatment where dispersion is found to remain anomalous (non-Gaussian), even if transport is considered over long macroscopic times.

2.
Phys Rev E ; 104(1-2): 015314, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34412268

RESUMO

A numerical method based on the Lattice Boltzmann formalism is presented to capture the effect of adsorption kinetics on transport in porous media. Through the use of a general adsorption operator, canonical models such as Henry and Langmuir adsorption as well as more complex adsorption mechanisms involving collective behavior with lateral interactions and surface aggregation can be investigated using this versatile model. By extending the description of adsorption phenomena to kinetic regimes with any underlying adsorption model, this effective technique allows assessing the coupled dynamics resulting from advection, diffusion, and adsorption in pores not only in stationary conditions but also under transient conditions (i.e., in regimes where the adsorbed amount evolves with time due to diffusion and advection). As illustrated in this paper, the development of such an approach provides a simple tool to determine the reciprocal effect of molecular flow and dispersion on adsorption kinetics. In this context, the use of a Lattice Boltzmann-based approach is important as it allows considering porous media of any morphology and topology. Beyond fundamental implications, this efficient method allows treating real engineering conditions such as pollutant dispersion or surfactant injection in a flowing liquid in soils and porous rocks.

3.
J Phys Chem B ; 124(47): 10841-10849, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33196196

RESUMO

Surfactant adsorption in porous media remains poorly understood, as the microscopic collective behavior of these amphiphilic molecules leads to nonconventional phenomena with complex underlying kinetics/structural organization. Here, we develop a simple thermodynamic model, which captures this rich behavior by including cooperative effects to account for lateral interactions between adsorbed molecules and the formation of ordered or disordered self-assemblies. In more detail, this model relies on a kinetic approach, involving adsorption/desorption rates that depend on the surfactant surface concentration to account for facilitated or hindered adsorption at different adsorption stages. Using different surfactants/porous solids, adsorption on both strongly and weakly adsorbing surfaces is found to be accurately described with parameters that are readily estimated from available adsorption experiments. The validity of our physical approach is confirmed by showing that the inferred adsorption/desorption rates obey the quasi-chemical approximation for lateral adsorbate interactions. Such cooperative effects are shown to lead to adsorption kinetics that drastically depart from conventional frameworks (e.g., Henry, Langmuir, and Sips models).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...