Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(4): 109489, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38558933

RESUMO

The Bacopa monnieri plant contains phytochemicals that have been used extensively in traditional medicine to treat various diseases. More recently it has been shown to accelerate wound healing, though its mechanism of action is largely unknown. Here we investigated the cellular pathways activated by a methanol extract of Bacopa monnieri in human dermal fibroblasts, which play many critical roles in the wound healing program. Gene expression analysis revealed that the Bacopa monnieri extract can modulate multiple processes involved in the wound healing program such as migration, proliferation, and angiogenesis. We discovered that the extract can increase migration of fibroblasts via modulating the size and number of focal adhesions. Bacopa monnieri-mediated changes in focal adhesions are dependent on α5ß1 integrin activation and subsequent phosphorylation of focal adhesion kinase (FAK). Altogether our results suggest that Bacopa monnieri extract could enhance the wound healing rate via modulating fibroblast migration into the wound bed.

2.
Semin Cancer Biol ; 97: 104-123, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38029865

RESUMO

In cancer patients, immune cells are often functionally compromised due to the immunosuppressive features of the tumor microenvironment (TME) which contribute to the failures in cancer therapies. Clinical and experimental evidence indicates that developing tumors adapt to the immunological environment and create a local microenvironment that impairs immune function by inducing immune tolerance and invasion. In this context, microenvironmental hypoxia, which is an established hallmark of solid tumors, significantly contributes to tumor aggressiveness and therapy resistance through the induction of tumor plasticity/heterogeneity and, more importantly, through the differentiation and expansion of immune-suppressive stromal cells. We and others have provided evidence indicating that hypoxia also drives genomic instability in cancer cells and interferes with DNA damage response and repair suggesting that hypoxia could be a potential driver of tumor mutational burden. Here, we reviewed the current knowledge on how hypoxic stress in the TME impacts tumor angiogenesis, heterogeneity, plasticity, and immune resistance, with a special interest in tumor immunogenicity and hypoxia targeting. An integrated understanding of the complexity of the effect of hypoxia on the immune and microenvironmental components could lead to the identification of better adapted and more effective combinational strategies in cancer immunotherapy. Clearly, the discovery and validation of therapeutic targets derived from the hypoxic tumor microenvironment is of major importance and the identification of critical hypoxia-associated pathways could generate targets that are undeniably attractive for combined cancer immunotherapy approaches.


Assuntos
Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Imunoterapia , Hipóxia/genética , Hipóxia/metabolismo , Tolerância Imunológica/genética , Hipóxia Celular/genética , Microambiente Tumoral
3.
J Invest Dermatol ; 143(5): 699-710.e10, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36528128

RESUMO

Systemic sclerosis is a fibrotic disease that initiates in the skin and progresses to internal organs, leading to a poor prognosis. Unraveling the etiology of a chronic, multifactorial disease such as systemic sclerosis has been aided by various animal models that recapitulate certain aspects of the human pathology. We found that the transcription factor SNAI1 is overexpressed in the epidermis of patients with systemic sclerosis, and a transgenic mouse recapitulating this expression pattern is sufficient to induce many clinical features of the human disease. Using this mouse model as a discovery platform, we have uncovered a critical role for the matricellular protein Mindin (SPON2) in fibrogenesis. Mindin is produced by SNAI1 transgenic skin keratinocytes and aids fibrogenesis by inducing early inflammatory cytokine production and collagen secretion in resident dermal fibroblasts. Given the dispensability of Mindin in normal tissue physiology, targeting this protein holds promise as an effective therapy for fibrosis.


Assuntos
Fibroblastos , Escleroderma Sistêmico , Camundongos , Animais , Humanos , Fibroblastos/metabolismo , Escleroderma Sistêmico/patologia , Pele/patologia , Proteínas da Matriz Extracelular/metabolismo , Fibrose , Camundongos Transgênicos , Modelos Animais de Doenças , Proteínas de Neoplasias/metabolismo
4.
Int J Mol Sci ; 23(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35743294

RESUMO

The role of autophagy in lung cancer cells exposed to waterpipe smoke (WPS) is not known. Because of the important role of autophagy in tumor resistance and progression, we investigated its relationship with WP smoking. We first showed that WPS activated autophagy, as reflected by LC3 processing, in lung cancer cell lines. The autophagy response in smokers with lung adenocarcinoma, as compared to non-smokers with lung adenocarcinoma, was investigated further using the TCGA lung adenocarcinoma bulk RNA-seq dataset with the available patient metadata on smoking status. The results, based on a machine learning classification model using Random Forest, indicate that smokers have an increase in autophagy-activating genes. Comparative analysis of lung adenocarcinoma molecular signatures in affected patients with a long-term active exposure to smoke compared to non-smoker patients indicates a higher tumor mutational burden, a higher CD8+ T-cell level and a lower dysfunction level in smokers. While the expression of the checkpoint genes tested-PD-1, PD-L1, PD-L2 and CTLA-4-remains unchanged between smokers and non-smokers, B7-1, B7-2, IDO1 and CD200R1 were found to be higher in non-smokers than smokers. Because multiple factors in the tumor microenvironment dictate the success of immunotherapy, in addition to the expression of immune checkpoint genes, our analysis explains why patients who are smokers with lung adenocarcinoma respond better to immunotherapy, even though there are no relative differences in immune checkpoint genes in the two groups. Therefore, targeting autophagy in lung adenocarcinoma patients, in combination with checkpoint inhibitor-targeted therapies or chemotherapy, should be considered in smoker patients with lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Fumar Cachimbo de Água , Adenocarcinoma de Pulmão/genética , Autofagia/genética , Antígeno B7-H1/genética , Genômica , Humanos , Neoplasias Pulmonares/metabolismo , Microambiente Tumoral/genética
5.
Exp Dermatol ; 31(8): 1188-1201, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35353932

RESUMO

The wound healing process is a product of three successive and overlapping phases of inflammation, proliferation and remodelling. Considerable efforts have been invested in deconstructing the intercellular crosstalk that orchestrates tissue repair, and we investigated the role of neuropeptides released from peripheral neurons upon injury in mediating these interactions. Amongst the most abundant of these neuropeptides secreted by nerves in the skin, is Substance P (SP). Given the role of dermal fibroblasts in coordinating multiple processes in the wound healing program, the effect of SP on human dermal fibroblasts of different ages was evaluated. The use of a substrate that recapitulates the mechanical properties of the in vivo tissue revealed novel effects of SP on dermal fibroblasts, including a block in inflammatory cytokine expression. Moreover, SP can promote expression of some extracellular matrix components and generates signals that regulate angiogenesis. Interestingly, the response of fibroblasts to SP was reduced concomitant with donor age. Altogether, SP acts to inhibit the inflammatory responses and promote proliferation-associated responses in an age-dependent manner in dermal fibroblasts, suggesting a role as a molecular switch between the inflammatory and proliferative phases of the wound healing response.


Assuntos
Neuropeptídeos , Substância P , Proliferação de Células , Fibroblastos/metabolismo , Humanos , Neuropeptídeos/metabolismo , Substância P/metabolismo , Cicatrização/fisiologia
6.
Front Immunol ; 13: 828875, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35211123

RESUMO

Hypoxia is an environmental stressor that is instigated by low oxygen availability. It fuels the progression of solid tumors by driving tumor plasticity, heterogeneity, stemness and genomic instability. Hypoxia metabolically reprograms the tumor microenvironment (TME), adding insult to injury to the acidic, nutrient deprived and poorly vascularized conditions that act to dampen immune cell function. Through its impact on key cancer hallmarks and by creating a physical barrier conducive to tumor survival, hypoxia modulates tumor cell escape from the mounted immune response. The tumor cell-immune cell crosstalk in the context of a hypoxic TME tips the balance towards a cold and immunosuppressed microenvironment that is resistant to immune checkpoint inhibitors (ICI). Nonetheless, evidence is emerging that could make hypoxia an asset for improving response to ICI. Tackling the tumor immune contexture has taken on an in silico, digitalized approach with an increasing number of studies applying bioinformatics to deconvolute the cellular and non-cellular elements of the TME. Such approaches have additionally been combined with signature-based proxies of hypoxia to further dissect the turbulent hypoxia-immune relationship. In this review we will be highlighting the mechanisms by which hypoxia impacts immune cell functions and how that could translate to predicting response to immunotherapy in an era of machine learning and computational biology.


Assuntos
Hipóxia/imunologia , Imunomodulação , Neoplasias/imunologia , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Proteínas de Checkpoint Imunológico/genética , Proteínas de Checkpoint Imunológico/metabolismo , Aprendizado de Máquina , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Evasão Tumoral/imunologia , Microambiente Tumoral/imunologia
7.
Cancers (Basel) ; 13(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573362

RESUMO

Programmed cell death or type I apoptosis has been extensively studied and its contribution to the pathogenesis of disease is well established. However, autophagy functions together with apoptosis to determine the overall fate of the cell. The cross talk between this active self-destruction process and apoptosis is quite complex and contradictory as well, but it is unquestionably decisive for cell survival or cell death. Autophagy can promote tumor suppression but also tumor growth by inducing cancer-cell development and proliferation. In this review, we will discuss how autophagy reprograms tumor cells in the context of tumor hypoxic stress. We will illustrate how autophagy acts as both a suppressor and a driver of tumorigenesis through tuning survival in a context dependent manner. We also shed light on the relationship between autophagy and immune response in this complex regulation. A better understanding of the autophagy mechanisms and pathways will undoubtedly ameliorate the design of therapeutics aimed at targeting autophagy for future cancer immunotherapies.

8.
Oncol Rep ; 45(3): 879-890, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33469682

RESUMO

Waterpipe tobacco smoking (WPS) continues to spread globally and presents serious health hazards. The aim of the present study was to investigate the effects of treatment with WPS condensate (WPSC) on lung cell proliferation and plasticity as well as tumor cell recognition and killing by natural killer (NK) cells using cytotoxicity assays. The results indicated that exposure of normal and cancer lung cell lines to WPSC resulted in a decrease in their in vitro growth in a dose-dependent manner and it induced tumor senescence. In addition, WPSC selectively caused DNA damage as revealed by an increase in γH2AX and 53BP1 in tumor lung cells. To gain further insight into the molecular mechanisms altered by WPSC, we conducted a global comprehensive transcriptome analysis of WPSC-treated tumor cells. Data analysis identified an expression profile of genes that best distinguished treated and non-treated cells involving several pathways. Of these pathways, we focused on those involved in epithelial to mesenchymal transition (EMT) and stemness. Results showed that WPSC induced an increase in SNAI2 expression associated with EMT, ACTA2 and SERPINE2 were involved in invasion and CD44 was associated with stemness. Furthermore, WPSC exposure increased the expression of inflammatory response genes including CASP1, IL1B, IL6 and CCL2. While immune synapse formation between NK and WPSC-treated lung cancer target cells was not affected, the capacity of NK cells to kill these target cells was reduced. The data reported in the present study are, to the best of our knowledge, the first in vitro demonstration of WPSC effects on lung cellular parameters providing evidence of its potential involvement in tumor physiology and development.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/imunologia , Neoplasias Pulmonares/imunologia , Nicotiana/efeitos adversos , Fumaça/efeitos adversos , Fumar Cachimbo de Água/efeitos adversos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/imunologia , Linhagem Celular Tumoral , Plasticidade Celular/efeitos dos fármacos , Plasticidade Celular/genética , Plasticidade Celular/imunologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Dano ao DNA/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia
9.
Semin Cancer Biol ; 65: 140-154, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31927131

RESUMO

Immunotherapy is poised to become an increasingly utilized therapy in the treatment of cancer. However, several abnormalities in the tumor microenvironment (TME) that can thwart the efficacy of immunotherapies have been established. Microenvironmental hypoxia is a determining factor in shaping aggressiveness, metastatic potential and treatment resistance of solid tumors. The characterization of this phenomenon could prove beneficial for determining a patient's treatment path and for the introduction of novel targetable factors that can enhance therapeutic outcome. Indeed, the ablation of hypoxia has the potential to sensitize tumors to immunotherapy by metabolically remodeling their microenvironment. In this review, we discuss the intrinsic contributions of hypoxia to cellular plasticity, heterogeneity, stemness and genetic instability in the context of immune escape. In addition, we will shed light on how managing hypoxia can ameliorate response to immunotherapy and how integrating hypoxia gene signatures could play a role in this pursuit.


Assuntos
Imunoterapia , Neoplasias/terapia , Hipóxia Tumoral/imunologia , Microambiente Tumoral/imunologia , Humanos , Neoplasias/imunologia , Estresse Fisiológico/genética , Estresse Fisiológico/imunologia
10.
Int J Mol Sci ; 19(10)2018 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-30301213

RESUMO

Hypoxia, or gradients of hypoxia, occurs in most growing solid tumors and may result in pleotropic effects contributing significantly to tumor aggressiveness and therapy resistance. Indeed, the generated hypoxic stress has a strong impact on tumor cell biology. For example, it may contribute to increasing tumor heterogeneity, help cells gain new functional properties and/or select certain cell subpopulations, facilitating the emergence of therapeutic resistant cancer clones, including cancer stem cells coincident with tumor relapse and progression. It controls tumor immunogenicity, immune plasticity, and promotes the differentiation and expansion of immune-suppressive stromal cells. In this context, manipulation of the hypoxic microenvironment may be considered for preventing or reverting the malignant transformation. Here, we review the current knowledge on how hypoxic stress in tumor microenvironments impacts on tumor heterogeneity, plasticity and resistance, with a special interest in the impact on immune resistance and tumor immunogenicity.


Assuntos
Hipóxia/imunologia , Hipóxia/metabolismo , Imunomodulação , Neoplasias/imunologia , Neoplasias/metabolismo , Microambiente Tumoral/imunologia , Animais , Reparo do DNA , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/imunologia , Instabilidade Genômica , Humanos , Hipóxia/genética , Neoplasias/genética , Neoplasias/patologia , Células-Tronco Neoplásicas/metabolismo , Estresse Oxidativo , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Microambiente Tumoral/genética
11.
Crit Rev Immunol ; 38(6): 505-524, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31002604

RESUMO

Recent antitumor immunotherapies such as monoclonal antibodies targeting immune checkpoints have led to outstanding results in several cancers. However, despite the favorable outcomes for responding patients, the response rate remains relatively low. This is in part due to the influence of the tumor microenvironment (TME) in protecting the tumor from the antitumor immune response and facilitating immune escape. Tumor hypoxia is one of the most important features of the TME, exerting an adverse effect on tumor aggressiveness and patient prognosis. Hypoxic stress interferes with immune plasticity and promotes tumor heterogeneity and progression. Cellular adaptation to hypoxia is primarily mediated by a family of transcriptional regulators, hypoxia-inducible factor (HIF). Apart from hypoxia, the HIF pathway is modulated in a hypoxia-independent manner. HIF-1α stabilization and activity are regulated by epigenetic changes and mutations. Strong evidence indicates that tumor hypoxia controls malignant and metastatic phenotype of cancer cells and therefore presents a unique therapeutic challenge in the treatment of solid malignancies. An alluring alternative strategy to reinvigorate anticancer immune responses comes from the emerging field of TME and its associated pathways. Targeting hypoxia or its associated pathways may therefore offer new options in the design of innovative cancer immunotherapy approaches. In this article, we briefly review the potential of hypoxic stress on tumor plasticity and stromal reactivity as well as the possible targeting of hypoxia-induced pathways to increase immunotherapy efficiency.


Assuntos
Antineoplásicos/farmacologia , Imunoterapia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Hipóxia Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Animais , Antineoplásicos/imunologia , Humanos , Neoplasias/imunologia , Neoplasias/patologia , Hipóxia Tumoral/imunologia , Microambiente Tumoral/imunologia
12.
PLoS One ; 7(5): e37490, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22629406

RESUMO

The membrane cytoskeleton linker ezrin participates in several functions downstream of the receptor Met in response to Hepatocyte Growth Factor (HGF) stimulation. Here we report a novel interaction of ezrin with a HECT E3 ubiquitin ligase, WWP1/Aip5/Tiul1, a potential oncogene that undergoes genomic amplification and overexpression in human breast and prostate cancers. We show that ezrin binds to the WW domains of WWP1 via the consensus motif PPVY(477) present in ezrin's C-terminus. This association results in the ubiquitylation of ezrin, a process that requires an intact PPVY(477) motif. Interestingly ezrin ubiquitylation does not target the protein for degradation by the proteasome. We find that ezrin ubiquitylation by WWP1 in epithelial cells leads to the upregulation of Met level in absence of HGF stimulation and increases the response of Met to HGF stimulation as measured by the ability of the cells to heal a wound. Interestingly this effect requires ubiquitylated ezrin since it can be rescued, after depletion of endogenous ezrin, by wild type ezrin but not by a mutant of ezrin that cannot be ubiquitylated. Taken together our data reveal a new role for ezrin in Met receptor stability and activity through its association with the E3 ubiquitin ligase WWP1. Given the role of Met in cell proliferation and tumorigenesis, our results may provide a mechanistic basis for understanding the role of ezrin in tumor progression.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/fisiologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Proteínas do Citoesqueleto/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Células Tumorais Cultivadas , Ubiquitina-Proteína Ligases/genética
13.
J Med Chem ; 54(24): 8373-85, 2011 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-22044119

RESUMO

We have identified highly selective imidazopyridines armed with benzimidazol and/or arylimidazole as potent ß-secretase inhibitors. The most effective and selective analogues demonstrated low nanomolar potency for the BACE1 enzyme as measured by FRET and cell-based (ELISA) assays and exhibited comparable affinity (KI) and high ligand efficiency (LE). In addition, these motifs were highly selective (>200) against the structurally related aspartyl protease BACE2. Our design strategy followed a traditional SAR approach and was supported by molecular modeling studies based on the previously reported hydroxyethylene transition state inhibitor derived from isophthalic acid I. Of the most potent compounds, 34 displayed an IC50 for BACE1 of 18 nM and exhibited cellular activity with an EC50 of 37 nM in the cell-based ELISA assay, as well as high affinity (KI=17 nM) and ligand efficiency (LE=1.7 kJ/mol). Compound 34 was found to be 204-fold more selective for BACE1 compared to the closely related aspartyl protease BACE2.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Imidazóis/síntese química , Piridinas/síntese química , Relação Quantitativa Estrutura-Atividade , Doença de Alzheimer/tratamento farmacológico , Linhagem Celular Tumoral , Desenho de Fármacos , Ensaio de Imunoadsorção Enzimática , Transferência Ressonante de Energia de Fluorescência , Humanos , Imidazóis/química , Imidazóis/farmacologia , Ligantes , Modelos Moleculares , Piridinas/química , Piridinas/farmacologia
14.
Eur J Med Chem ; 46(5): 1874-81, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21414694

RESUMO

New antimicrobial agents, imidazo[1,2-a]pyridine and imidazo[2,1-b][1,3]benzothiazole, have been synthesized. Their antimicrobial activities were conducted against various Gram-positive, Gram-negative bacteria and fungi. Compounds 6c, 7a, 10b, 11a, 12b, 14a, 14b, 15a and 15b, exerted strong inhibition of the investigated bacterial and fungal strains compared to control antibiotics amoxicillin and cefixime and the antifungal agent fluconazole. Results from this study showed that the nature of the substituents on the armed aryl groups determines the extent of the activity of the fused imidazopyridine and/or imidazobenzothiazole derivatives. Preliminary structure-activity observations revealed that bromo-fluoro substituents enhanced the antimicrobial activity significantly compared to other substituents.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Bactérias/efeitos dos fármacos , Benzotiazóis/farmacologia , Desenho de Fármacos , Fungos/efeitos dos fármacos , Imidazóis/farmacologia , Piridinas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Benzotiazóis/síntese química , Benzotiazóis/química , Relação Dose-Resposta a Droga , Imidazóis/síntese química , Imidazóis/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Piridinas/síntese química , Piridinas/química , Estereoisomerismo , Relação Estrutura-Atividade
15.
RNA ; 14(3): 491-502, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18218704

RESUMO

Myo2p is an essential class V myosin in budding yeast with several identified functions in organelle trafficking and spindle orientation. The present study demonstrates that Myo2p is a component of a large RNA-containing complex (Myo2p-RNP) that is distinct from polysomes based on sedimentation analysis and lack of ribosomal subunits in the Myo2p-RNP. Microarray analysis of RNAs that coimmunoprecipitate with Myo2p revealed the presence of a large number of mRNAs in this complex. The Myo2p-RNA complex is in part composed of the RNA processing body (P-body) based on coprecipitation with P-body protein subunits and partial colocalization of Myo2p with P-bodies. P-body disassembly is delayed in the motor mutant, myo2-66, indicating that Myo2p may facilitate the release of mRNAs from the P-body.


Assuntos
Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/química , Miosina Tipo V/metabolismo , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Actinas/metabolismo , Adenosina Trifosfatases/metabolismo , Sequência de Bases , Primers do DNA/genética , Substâncias Macromoleculares , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética , Análise de Sequência com Séries de Oligonucleotídeos , Organelas/metabolismo , Polirribossomos/metabolismo , Processamento Pós-Transcricional do RNA , RNA Fúngico/química , RNA Fúngico/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Ribonucleoproteínas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Vesículas Secretórias/metabolismo , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...