Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Invest Dermatol ; 143(5): 699-710.e10, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36528128

RESUMO

Systemic sclerosis is a fibrotic disease that initiates in the skin and progresses to internal organs, leading to a poor prognosis. Unraveling the etiology of a chronic, multifactorial disease such as systemic sclerosis has been aided by various animal models that recapitulate certain aspects of the human pathology. We found that the transcription factor SNAI1 is overexpressed in the epidermis of patients with systemic sclerosis, and a transgenic mouse recapitulating this expression pattern is sufficient to induce many clinical features of the human disease. Using this mouse model as a discovery platform, we have uncovered a critical role for the matricellular protein Mindin (SPON2) in fibrogenesis. Mindin is produced by SNAI1 transgenic skin keratinocytes and aids fibrogenesis by inducing early inflammatory cytokine production and collagen secretion in resident dermal fibroblasts. Given the dispensability of Mindin in normal tissue physiology, targeting this protein holds promise as an effective therapy for fibrosis.


Assuntos
Fibroblastos , Escleroderma Sistêmico , Camundongos , Animais , Humanos , Fibroblastos/metabolismo , Escleroderma Sistêmico/patologia , Pele/patologia , Proteínas da Matriz Extracelular/metabolismo , Fibrose , Camundongos Transgênicos , Modelos Animais de Doenças , Proteínas de Neoplasias/metabolismo
2.
Exp Dermatol ; 31(8): 1188-1201, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35353932

RESUMO

The wound healing process is a product of three successive and overlapping phases of inflammation, proliferation and remodelling. Considerable efforts have been invested in deconstructing the intercellular crosstalk that orchestrates tissue repair, and we investigated the role of neuropeptides released from peripheral neurons upon injury in mediating these interactions. Amongst the most abundant of these neuropeptides secreted by nerves in the skin, is Substance P (SP). Given the role of dermal fibroblasts in coordinating multiple processes in the wound healing program, the effect of SP on human dermal fibroblasts of different ages was evaluated. The use of a substrate that recapitulates the mechanical properties of the in vivo tissue revealed novel effects of SP on dermal fibroblasts, including a block in inflammatory cytokine expression. Moreover, SP can promote expression of some extracellular matrix components and generates signals that regulate angiogenesis. Interestingly, the response of fibroblasts to SP was reduced concomitant with donor age. Altogether, SP acts to inhibit the inflammatory responses and promote proliferation-associated responses in an age-dependent manner in dermal fibroblasts, suggesting a role as a molecular switch between the inflammatory and proliferative phases of the wound healing response.


Assuntos
Neuropeptídeos , Substância P , Proliferação de Células , Fibroblastos/metabolismo , Humanos , Neuropeptídeos/metabolismo , Substância P/metabolismo , Cicatrização/fisiologia
3.
Cancers (Basel) ; 13(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573362

RESUMO

Programmed cell death or type I apoptosis has been extensively studied and its contribution to the pathogenesis of disease is well established. However, autophagy functions together with apoptosis to determine the overall fate of the cell. The cross talk between this active self-destruction process and apoptosis is quite complex and contradictory as well, but it is unquestionably decisive for cell survival or cell death. Autophagy can promote tumor suppression but also tumor growth by inducing cancer-cell development and proliferation. In this review, we will discuss how autophagy reprograms tumor cells in the context of tumor hypoxic stress. We will illustrate how autophagy acts as both a suppressor and a driver of tumorigenesis through tuning survival in a context dependent manner. We also shed light on the relationship between autophagy and immune response in this complex regulation. A better understanding of the autophagy mechanisms and pathways will undoubtedly ameliorate the design of therapeutics aimed at targeting autophagy for future cancer immunotherapies.

4.
PLoS One ; 7(5): e37490, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22629406

RESUMO

The membrane cytoskeleton linker ezrin participates in several functions downstream of the receptor Met in response to Hepatocyte Growth Factor (HGF) stimulation. Here we report a novel interaction of ezrin with a HECT E3 ubiquitin ligase, WWP1/Aip5/Tiul1, a potential oncogene that undergoes genomic amplification and overexpression in human breast and prostate cancers. We show that ezrin binds to the WW domains of WWP1 via the consensus motif PPVY(477) present in ezrin's C-terminus. This association results in the ubiquitylation of ezrin, a process that requires an intact PPVY(477) motif. Interestingly ezrin ubiquitylation does not target the protein for degradation by the proteasome. We find that ezrin ubiquitylation by WWP1 in epithelial cells leads to the upregulation of Met level in absence of HGF stimulation and increases the response of Met to HGF stimulation as measured by the ability of the cells to heal a wound. Interestingly this effect requires ubiquitylated ezrin since it can be rescued, after depletion of endogenous ezrin, by wild type ezrin but not by a mutant of ezrin that cannot be ubiquitylated. Taken together our data reveal a new role for ezrin in Met receptor stability and activity through its association with the E3 ubiquitin ligase WWP1. Given the role of Met in cell proliferation and tumorigenesis, our results may provide a mechanistic basis for understanding the role of ezrin in tumor progression.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/fisiologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Proteínas do Citoesqueleto/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Células Tumorais Cultivadas , Ubiquitina-Proteína Ligases/genética
5.
RNA ; 14(3): 491-502, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18218704

RESUMO

Myo2p is an essential class V myosin in budding yeast with several identified functions in organelle trafficking and spindle orientation. The present study demonstrates that Myo2p is a component of a large RNA-containing complex (Myo2p-RNP) that is distinct from polysomes based on sedimentation analysis and lack of ribosomal subunits in the Myo2p-RNP. Microarray analysis of RNAs that coimmunoprecipitate with Myo2p revealed the presence of a large number of mRNAs in this complex. The Myo2p-RNA complex is in part composed of the RNA processing body (P-body) based on coprecipitation with P-body protein subunits and partial colocalization of Myo2p with P-bodies. P-body disassembly is delayed in the motor mutant, myo2-66, indicating that Myo2p may facilitate the release of mRNAs from the P-body.


Assuntos
Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/química , Miosina Tipo V/metabolismo , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Actinas/metabolismo , Adenosina Trifosfatases/metabolismo , Sequência de Bases , Primers do DNA/genética , Substâncias Macromoleculares , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética , Análise de Sequência com Séries de Oligonucleotídeos , Organelas/metabolismo , Polirribossomos/metabolismo , Processamento Pós-Transcricional do RNA , RNA Fúngico/química , RNA Fúngico/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Ribonucleoproteínas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Vesículas Secretórias/metabolismo , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...