Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38755066

RESUMO

One of the main causes of human brucellosis is Brucella melitensis infecting small ruminants. To date, Rev1 is the only vaccine successfully used to control ovine and caprine brucellosis. However, it is pathogenic for pregnant animals, resulting in abortions and vaginal and milk shedding, as well as being infectious for humans. Therefore, there is an urgent need to develop an effective vaccine that is safer than Rev1. In efforts to further attenuate Rev1, we recently used wzm inactivation to generate a rough mutant (Rev1Δwzm) that retains a complete antigenic O-polysaccharide in the bacterial cytoplasm. The aim of the present study was to evaluate the placental pathogenicity of Rev1Δwzm in trophoblastic cells, throughout pregnancy in mice, and in ewes inoculated in different trimesters of pregnancy. This mutant was evaluated in comparison with the homologous 16MΔwzm derived from a virulent strain of B. melitensis and the naturally rough sheep pathogen B. ovis. Our results show that both wzm mutants triggered reduced cytotoxic, pro-apoptotic, and pro-inflammatory signaling in Bewo trophoblasts, as well as reduced relative expression of apoptosis genes. In mice, both wzm mutants produced infection but were rapidly cleared from the placenta, in which only Rev1Δwzm induced a low relative expression of pro-apoptotic and pro-inflammatory genes. In the 66 inoculated ewes, Rev1Δwzm was safe and immunogenic, displaying a transient serological interference in standard RBT but not CFT S-LPS tests; this serological response was minimized by conjunctival administration. In conclusion, these results support that B. melitensis Rev1Δwzm is a promising vaccine candidate for use in pregnant ewes and its efficacy against B. melitensis and B. ovis infections in sheep warrants further study.

2.
Microbiol Spectr ; 10(6): e0175922, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36326504

RESUMO

Brucellosis, a re-emerging zoonotic infection, threatens animal welfare and public health with serious economic consequences. A definitive diagnosis requires Brucella isolation by culturing field specimens in specific media. This study aimed to (i) assess the effectivity of recommended Farrell's médium (FM) and CITA medium (CM) for the isolation of four Brucella melitensis strains (16M, Rev1, and the 16MΔwzm and Rev1Δwzm in-frame deletion mutants) with variable susceptibility to polymyxins; (ii) develop a Brucella selective medium (BSM) suitable for these strains; (iii) test BSM, FM, and CM with other Brucella species; and (iv) develop an improved selective culture medium (BruSIC) for all brucellae, including B. abortus bv1. The four B. melitensis strains were strongly inhibited in FM and (except Rev1) CM. Since Rev1Δwzm's CM inhibition was due to a synergistic effect of colistin and vancomycin, we formulated BSM with half the concentrations of both antibiotics, achieving a similar growth of B. melitensis to blood agar base (BAB) and an inhibition of contaminant microorganisms comparable to CM; CM performance was surpassed by BSM for the primary isolation of B. melitensis when tested in 1,789 real sheep samples. For other brucellae, BSM and CM were more inhibitory than FM for B. abortus bv1 when using plates immediately after preparation but not after ≥4 weeks of storage. To address this, we developed the improved solid medium BruSIC by replacing the calf serum in BSM with activated charcoal. BruSIC yielded faster colony growth than BSM and CM and similar CFU numbers than BAB (including for B. ovis in BAB-Serum) and inhibited accompanying microorganisms in sheep and cow samples as effectively as BSM. IMPORTANCE Farrell's medium (FM) and CITA medium (CM), recommended for Brucella isolation in animal samples, are inhibitory for certain strains. A reformulated Brucella selective medium (BSM), containing half the CM vancomycin and colistin concentrations, improved the isolation of B. melitensis, but not Brucella abortus bv1. A novel Brucella selective culture medium (BruSIC), in which calf serum is replaced by activated charcoal, retains the selectivity and improves the productivity of BSM and CM. BruSIC allows the growth of all brucellae faster than in CM or BSM, and at CFU number equivalent to BAB supplemented by calf serum, including B. abortus bv1 and the serum-dependent Brucella ovis. Due to its performance and reduced cost, BruSIC represents an added-value alternative to the existing selective culture media for these bacteria.


Assuntos
Brucella melitensis , Brucelose , Feminino , Animais , Bovinos , Ovinos , Vancomicina , Colistina , Carvão Vegetal , Brucelose/diagnóstico , Brucelose/veterinária , Brucelose/microbiologia
3.
Front Microbiol ; 13: 908495, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875565

RESUMO

The lipopolysaccharide (LPS) O-polysaccharide (O-PS) is the main virulence factor in Brucella. After synthesis in the cytoplasmic membrane, O-PS is exported to the periplasm by the Wzm/Wzt system, where it is assembled into a LPS. This translocation also engages a bactoprenol carrier required for further biosynthesis pathways, such as cell wall biogenesis. Targeting O-PS export by blockage holds great potential for vaccine development, but little is known about the biological implications of each Wzm/Wzt moiety. To improve this knowledge and to elucidate its potential application as a vaccine, we constructed and studied wzm/wzt single- and double-deletion mutants, using the attenuated strain Brucella melitensis Rev1 as the parental strain. This allowed us to describe the composition of Brucella peptidoglycan for the first time. We observed that these mutants lack external O-PS yet trigger changes in genetic transcription and in phenotypic properties associated with the outer membrane and cell wall. The three mutants are highly attenuated; unexpectedly, Rev1Δwzm also excels as an immunogenic and effective vaccine against B. melitensis and Brucella ovis in mice, revealing that low persistence is not at odds with efficacy. Rev1Δwzm is attenuated in BeWo trophoblasts, does not infect mouse placentas, and is safe in pregnant ewes. Overall, these attributes and the minimal serological interference induced in sheep make Rev1Δwzm a highly promising vaccine candidate.

4.
PLoS One ; 16(11): e0260288, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34807952

RESUMO

Bovine brucellosis induces abortion in cows, produces important economic losses, and causes a widely distributed zoonosis. Its eradication was achieved in several countries after sustained vaccination with the live attenuated Brucella abortus S19 vaccine, in combination with the slaughtering of serologically positive animals. S19 induces antibodies against the smooth lipopolysaccharide (S-LPS), making difficult the differentiation of infected from vaccinated bovines. We developed an S19 strain constitutively expressing the green fluorescent protein (S19-GFP) coded in chromosome II. The S19-GFP displays similar biological characteristics and immunogenic and protective efficacies in mice to the parental S19 strain. S19-GFP can be distinguished from S19 and B. abortus field strains by fluorescence and multiplex PCR. Twenty-five heifers were vaccinated withS19-GFP (5×109 CFU) by the subcutaneous or conjunctival routes and some boosted with GFP seven weeks thereafter. Immunized animals were followed up for over three years and tested for anti-S-LPS antibodies by both the Rose Bengal test and a competitive ELISA. Anti-GFP antibodies were detected by an indirect ELISA and Western blotting. In most cases, anti-S-LPS antibodies preceded for several weeks those against GFP. The anti-GFP antibody response was higher in the GFP boosted than in the non-boosted animals. In all cases, the anti-GFP antibodies persisted longer, or at least as long, as those against S-LPS. The drawbacks and potential advantages of using the S19-GFP vaccine for identifying vaccinated animals in infected environments are discussed.


Assuntos
Vacina contra Brucelose/análise , Brucella abortus/isolamento & purificação , Brucelose Bovina/diagnóstico , Brucelose Bovina/prevenção & controle , Proteínas de Fluorescência Verde/análise , Animais , Vacina contra Brucelose/uso terapêutico , Bovinos/microbiologia , Ensaio de Imunoadsorção Enzimática , Feminino , Fluorescência , Proteínas de Fluorescência Verde/uso terapêutico , Camundongos , Reação em Cadeia da Polimerase Multiplex , Vacinação/veterinária
5.
Transbound Emerg Dis ; 66(1): 505-516, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30375177

RESUMO

Brucellosis is a worldwide zoonosis causing important economic loss and a public health problem. Small ruminants are the preferred hosts of Brucella melitensis and thus the main source of human infections. Effective control of sheep and goat brucellosis has been achieved in several countries through vaccination with the live-attenuated B. melitensis Rev1 vaccine. However, Rev1 induces a long-lasting serological response that hinders the differentiation between infected and vaccinated animals. A Rev1::gfp strain expressing constitutively the Green Fluorescent Protein (GFP) was built by stable insertion of a mini-Tn7-gfp in the glmS-recG non-codifying chromosomal region. An associated indirect ELISA-GFP was developed to identify anti-GFP antibodies in vaccinated animals. The resulting Rev1::gfp kept the biological properties of the Rev1 reference strain, including residual virulence and efficacy in mice, and was readily distinguished from Rev1 and other Brucella field strains by direct visualization under ultraviolet illumination, fluorescence microscopy and a multiplex PCR-GFP. The Rev1::gfp strain did not elicit anti-GFP antibodies itself in lambs but when applied in combination with recombinant GFP induced an intense and long-lasting (>9 months) anti-GFP serological response readily detectable by the ELISA-GFP. Overall, our results confirm that Rev1 GFP-tagging can be a suitable alternative for identifying vaccinated sheep in infected contexts.


Assuntos
Vacina contra Brucelose/administração & dosagem , Brucella melitensis/imunologia , Brucelose/veterinária , Proteínas de Fluorescência Verde/imunologia , Imunoglobulina G/sangue , Doenças dos Ovinos/prevenção & controle , Vacinação/veterinária , Animais , Vacina contra Brucelose/imunologia , Brucelose/imunologia , Brucelose/prevenção & controle , Ensaio de Imunoadsorção Enzimática/veterinária , Feminino , Substâncias Luminescentes , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência/veterinária , Ovinos , Doenças dos Ovinos/diagnóstico , Doenças dos Ovinos/imunologia , Vacinas Atenuadas/imunologia
6.
Vet Res ; 45: 72, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25029920

RESUMO

Brucella spp. are Gram-negative bacteria that behave as facultative intracellular parasites of a variety of mammals. This genus includes smooth (S) and rough (R) species that carry S and R lipopolysaccharides (LPS), respectively. S-LPS is a virulence factor, and mutants affected in the S-LPS O-polysaccharide (R mutants), core oligosaccharide or both show attenuation. However, B. ovis is naturally R and is virulent in sheep. We studied the role of B. ovis LPS in virulence by mutating the orthologues of wadA, wadB and wadC, three genes known to encode LPS core glycosyltransferases in S brucellae. When mapped with antibodies to outer membrane proteins (Omps) and R-LPS, wadB and wadC mutants displayed defects in LPS structure and outer membrane topology but inactivation of wadA had little or no effect. Consistent with these observations, the wadB and wadC but not the wadA mutants were attenuated in mice. When tested as vaccines, the wadB and wadC mutants protected mice against B. ovis challenge. The results demonstrate that the LPS core is a structure essential for survival in vivo not only of S brucellae but also of a naturally R Brucella pathogenic species, and they confirm our previous hypothesis that the Brucella LPS core is a target for vaccine development. Since vaccine B. melitensis Rev 1 is S and thus interferes in serological testing for S brucellae, wadB mutant represents a candidate vaccine to be evaluated against B. ovis infection of sheep suitable for areas free of B. melitensis.


Assuntos
Proteínas de Bactérias/genética , Vacina contra Brucelose/imunologia , Brucella ovis/imunologia , Brucelose/imunologia , Glicosiltransferases/genética , Lipopolissacarídeos/genética , Doenças dos Ovinos/imunologia , Animais , Anticorpos Antibacterianos/sangue , Proteínas de Bactérias/metabolismo , Vacina contra Brucelose/genética , Brucelose/microbiologia , Brucelose/veterinária , Feminino , Glicosiltransferases/metabolismo , Lipopolissacarídeos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Oligossacarídeos/genética , Oligossacarídeos/metabolismo , Reação em Cadeia da Polimerase/veterinária , Análise de Sequência de DNA/veterinária , Ovinos , Doenças dos Ovinos/microbiologia , Virulência
7.
BMC Vet Res ; 10: 59, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24606823

RESUMO

BACKGROUND: Salmonellosis is a major worldwide zoonosis, and Salmonella-infected finishing pigs are considered one of the major sources of human infections in developed countries. Baseline studies on salmonellosis prevalence in fattening pigs in Europe are based on direct pathogen isolation from mesenteric lymph nodes (MLN). This procedure is considered the most reliable for diagnosing salmonellosis in apparently healthy pigs. The presence of simultaneous infections by different Salmonella strains in the same animal has never been reported and could have important epidemiological implications. RESULTS: Fourteen finishing pigs belonging to 14 farms that showed high salmonellosis prevalence and a variety of circulating Salmonella strains, were found infected by Salmonella spp, and 7 of them were simultaneously infected with strains of 2 or 3 different serotypes. Typhimurium isolates showing resistance to several antimicrobials and carrying mobile integrons were the most frequently identified in the colonized MLN. Four animals were found infected by Salmonella spp. of a single serotype (Rissen or Derby) but showing 2 or 3 different antimicrobial resistance profiles, without evidence of mobile genetic element exchange in vivo. CONCLUSION: This is the first report clearly demonstrating that pigs naturally infected by Salmonella may harbour different Salmonella strains simultaneously. This may have implications in the interpretation of results from baseline studies, and also help to better understand human salmonellosis outbreaks and the horizontal transmission of antimicrobial resistance genes.


Assuntos
Doenças Linfáticas/microbiologia , Salmonelose Animal/microbiologia , Doenças dos Suínos/microbiologia , Animais , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão/veterinária , Farmacorresistência Bacteriana , Linfonodos/microbiologia , Mesentério/microbiologia , Salmonella/efeitos dos fármacos , Salmonella typhimurium/efeitos dos fármacos , Sorotipagem/veterinária , Suínos/microbiologia
8.
Vet Res ; 44: 105, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-24176078

RESUMO

Brucella melitensis Rev 1 is the best vaccine available for the prophylaxis of small ruminant brucellosis and, indirectly, for reducing human brucellosis. However, Rev 1 shows anomalously high rates of spontaneous dissociation from smooth (S) to rough (R) bacteria, the latter being inefficacious as vaccines. This S-R instability results from the loss of the O-polysaccharide. To overcome this problem, we investigated whether some recently described mechanisms promoting mutations in O-polysaccharide genes were involved in Rev 1 S-R dissociation. We found that a proportion of Rev 1 R mutants result from genome rearrangements affecting the wbo O-polysaccharide loci of genomic island GI-2 and the wbkA O-polysaccharide glycosyltransferase gene of the wbk region. Accordingly, we mutated the GI-2 int gene and the wbk IS transposase involved in those arrangements, and found that these Rev 1 mutants maintained the S phenotype and showed lower dissociation levels. Combining these two mutations resulted in a strain (Rev 2) displaying a 95% decrease in dissociation with respect to parental Rev 1 under conditions promoting dissociation. Rev 2 did not differ from Rev 1 in the characteristics used in Rev 1 typing (growth rate, colonial size, reactivity with O-polysaccharide antibodies, phage, dye and antibiotic susceptibility). Moreover, Rev 2 and Rev 1 showed similar attenuation and afforded similar protection in the mouse model of brucellosis vaccines. We conclude that mutations targeting genes and DNA sequences involved in spontaneous O-polysaccharide loss enhance the stability of a critical vaccine phenotype and complement the empirical stabilization precautions taken during S Brucella vaccine production.


Assuntos
Proteínas de Bactérias/genética , Vacinas Bacterianas/genética , Brucella melitensis/genética , Brucella melitensis/imunologia , Brucelose/veterinária , Regulação Bacteriana da Expressão Gênica , Animais , Proteínas de Bactérias/metabolismo , Vacinas Bacterianas/imunologia , Southern Blotting/veterinária , Brucella melitensis/citologia , Brucella melitensis/enzimologia , Brucelose/microbiologia , Brucelose/terapia , Cromossomos Bacterianos , Feminino , Deleção de Genes , Ilhas Genômicas , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Integrases/genética , Integrases/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Mutagênese , Reação em Cadeia da Polimerase/veterinária , Análise de Sequência de DNA/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...