Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 23(1): 220, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107838

RESUMO

BACKGROUND: Biotechnology provides a cost-effective way to produce nanomaterials such as silver oxide nanoparticles (Ag2ONPs), which have emerged as versatile entities with diverse applications. This study investigated the ability of endophytic bacteria to biosynthesize Ag2ONPs. RESULTS: A novel endophytic bacterial strain, Neobacillus niacini AUMC-B524, was isolated from Lycium shawii Roem. & Schult leaves and used to synthesize Ag2ONPS extracellularly. Plackett-Burman design and response surface approach was carried out to optimize the biosynthesis of Ag2ONPs (Bio-Ag2ONPs). Comprehensive characterization techniques, including UV-vis spectral analysis, Fourier transform infrared spectroscopy, transmission electron microscopy, X-ray diffraction, dynamic light scattering analysis, Raman microscopy, and energy dispersive X-ray analysis, confirmed the precise composition of the Ag2ONPS. Bio-Ag2ONPs were effective against multidrug-resistant wound pathogens, with minimum inhibitory concentrations (1-25 µg mL-1). Notably, Bio-Ag2ONPs demonstrated no cytotoxic effects on human skin fibroblasts (HSF) in vitro, while effectively suppressing the proliferation of human epidermoid skin carcinoma (A-431) cells, inducing apoptosis and modulating the key apoptotic genes including Bcl-2 associated X protein (Bax), B-cell lymphoma 2 (Bcl-2), Caspase-3 (Cas-3), and guardian of the genome (P53). CONCLUSIONS: These findings highlight the therapeutic potential of Bio-Ag2ONPs synthesized by endophytic N. niacini AUMC-B524, underscoring their antibacterial efficacy, anticancer activity, and biocompatibility, paving the way for novel therapeutic strategies.


Assuntos
Antibacterianos , Nanopartículas Metálicas , Compostos de Prata , Humanos , Nanopartículas Metálicas/química , Compostos de Prata/farmacologia , Compostos de Prata/química , Antibacterianos/farmacologia , Antibacterianos/biossíntese , Testes de Sensibilidade Microbiana , Bacillaceae/metabolismo , Óxidos/farmacologia , Óxidos/química , Fibroblastos/efeitos dos fármacos , Apoptose/efeitos dos fármacos
2.
Insect Sci ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990171

RESUMO

The ubiquitous incorporation of plastics into daily life, coupled with inefficient recycling practices, has resulted in the accumulation of millions of metric tons of plastic waste, that poses a serious threat to the Earth's sustainability. Plastic pollution, a global problem, disrupts the ecological balance and endangers various life forms. Efforts to combat plastic pollution are underway, with a promising avenue being biological degradation facilitated by certain insects and their symbiotic gut microorganisms, particularly bacteria. This review consolidates existing knowledge on plastic degradation by insects and their influence on gut microbiota. Additionally, it delves into the potential mechanisms employed by insects in symbiosis with gut bacteria, exploring the bioconversion of waste plastics into value-added biodegradable polymers through mineralization. These insights hold significant promise for the bio-upcycling of plastic waste, opening new horizons for future biomanufacturing of high-value chemicals from plastic-derived compounds. Finally, we weigh the pros and cons of future research endeavors related to the bioprospection of plastic-degrading bacteria from underexplored insect species. We also underscore the importance of bioengineering depolymerases with novel characteristics, aiming for their application in the remediation and valorization of waste plastics.

3.
J Agric Food Chem ; 72(25): 14264-14273, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38860833

RESUMO

Ergothioneine (EGT) is a naturally occurring derivative of histidine with diverse applications in the medicine, cosmetic, and food industries. Nevertheless, its sustainable biosynthesis faces hurdles due to the limited biosynthetic pathways, complex metabolic network of precursors, and high cost associated with fermentation. Herein, efforts were made to address these limitations first by reconstructing a novel EGT biosynthetic pathway from Methylobacterium aquaticum in Escherichia coli and optimizing it through plasmid copy number. Subsequently, the supply of precursor amino acids was promoted by engineering the global regulator, recruiting mutant resistant to feedback inhibition, and blocking competitive pathways. These metabolic modifications resulted in a significant improvement in EGT production, increasing from 35 to 130 mg/L, representing a remarkable increase of 271.4%. Furthermore, an economical medium was developed by replacing yeast extract with corn steep liquor, a byproduct of wet milling of corn. Finally, the production of EGT reached 595 mg/L with a productivity of 8.2 mg/L/h by exploiting fed-batch fermentation in a 10 L bioreactor. This study paves the way for exploring and modulating a de novo biosynthetic pathway for efficient and low-cost fermentative production of EGT.


Assuntos
Vias Biossintéticas , Ergotioneína , Escherichia coli , Fermentação , Engenharia Metabólica , Ergotioneína/biossíntese , Ergotioneína/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Reatores Biológicos
4.
J Agric Food Chem ; 72(25): 14274-14283, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38867465

RESUMO

ß-Alanine, a valuable ß-type amino acid, is experiencing increased demand due to its multifaceted applications in food flavoring, nutritional supplements, pharmaceuticals, and the chemical industry. Nevertheless, the sustainable biosynthesis of ß-alanine currently faces challenges due to the scarcity of robust strains, attributed to the complexities of modulating multiple genes and the inherent physiological constraints. Here, systems metabolic engineering was implemented in Escherichia coli to overcome these limitations. First, an efficient l-aspartate-α-decarboxylase (ADC) was recruited for ß-alanine biosynthesis. To conserve phosphoenolpyruvate flux, we subsequently modified the endogenous glucose assimilation system by inactivating the phosphotransferase system (PTS) and introducing an alternative non-PTS system, which increased ß-alanine production to 1.70 g/L. The supply of key precursors, oxaloacetate and l-aspartate, was synergistically improved through comprehensive modulation, including strengthening main flux and blocking bypass metabolism, which significantly increased the ß-alanine titer to 3.43 g/L. Next, the expression of ADC was optimized by promoter and untranslated region (UTR) engineering. Further transport engineering, which involved disrupting ß-alanine importer CycA and heterologously expressing ß-alanine exporter NCgI0580, improved ß-alanine production to 8.48 g/L. Additionally, corn steep liquor was used to develop a cost-effective medium. The final strain produced 74.03 g/L ß-alanine with a yield of 0.57 mol/mol glucose during fed-batch fermentation.


Assuntos
Escherichia coli , Fermentação , Glucose , Engenharia Metabólica , beta-Alanina , beta-Alanina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glucose/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo
5.
Bioresour Technol ; 400: 130685, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599349

RESUMO

D-arabitol, a versatile compound with applications in food, pharmaceutical, and biochemical industries, faces challenges in biomanufacturing due to poor chassis performance and unclear synthesis mechanisms. This study aimed to enhance the performance of Zygosaccharomyces rouxii to improve D-arabitol production. Firstly, a mutant strain Z. rouxii M075 obtained via atmospheric and room temperature plasma-mediated mutagenesis yielded 42.0 g/L of D-arabitol at 96 h, with about 50 % increase. Transcriptome-guided metabolic engineering of pathway key enzymes co-expression produced strain ZR-M3, reaching 48.9 g/L D-arabitol after 96 h fermentation. Finally, under optimized conditions, fed-batch fermentation of ZR-M3 in a 5 L bioreactor yielded an impressive D-arabitol titer of 152.8 g/L at 192 h, with a productivity of 0.8 g/L/h. This study highlights promising advancements in enhancing D-arabitol production, offering potential for more efficient biomanufacturing processes and wider industrial applications.


Assuntos
Fermentação , Engenharia Metabólica , Mutagênese , Álcoois Açúcares , Transcriptoma , Engenharia Metabólica/métodos , Álcoois Açúcares/metabolismo , Transcriptoma/genética , Reatores Biológicos , Perfilação da Expressão Gênica , Saccharomycetales/genética , Saccharomycetales/metabolismo
6.
J Agric Food Chem ; 72(5): 2536-2546, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38261597

RESUMO

Embracing the principles of sustainable development, the valorization of agrowastes into value-added chemicals has nowadays received significant attention worldwide. Herein, Escherichia coli was metabolically rewired to convert cellulosic hydrolysate of corn stover into a key platform chemical, namely, 3-hydroxypropionic acid (3-HP). First, the heterologous pathways were introduced into E. coli by coexpressing glycerol-3-P dehydrogenase and glycerol-3-P phosphatase in both single and fusion (gpdp12) forms, making the strain capable of synthesizing glycerol from glucose. Subsequently, a glycerol dehydratase (DhaB123-gdrAB) and an aldehyde dehydrogenase (GabD4) were overexpressed to convert glycerol into 3-HP. A fine-tuning between glycerol synthesis and its conversion into 3-HP was successfully established by 5'-untranslated region engineering of gpdp12 and dhaB123-gdrAB. The strain was further metabolically modulated to successfully prevent glycerol flux outside the cell and into the central metabolism. The finally remodulated chassis produced 32.91 g/L 3-HP from the cellulosic hydrolysate of stover during fed-batch fermentation.


Assuntos
Escherichia coli , Ácido Láctico/análogos & derivados , Zea mays , Escherichia coli/genética , Zea mays/metabolismo , Glicerol/metabolismo , Fermentação , Engenharia Metabólica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA