Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Interdiscip Perspect Infect Dis ; 2018: 4373981, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29853873

RESUMO

Bovine anaplasmosis is an infectious disease of cattle caused by the obligate intercellular bacterium, Anaplasma marginale, and it primarily occurs in tropical and subtropical regions of the world. In this study, an age-structured deterministic model for the transmission dynamics of bovine anaplasmosis was developed; the model incorporates symptomatic and asymptomatic cattle classes. Sensitivity analysis was carried out to determine the parameters with the highest impact on the reproduction number. The dominant parameters were the bovine natural and disease-induced death rates, disease progression rate in adult cattle, the mechanical devices transmission probability and contact rates, the pathogen contamination, and decay rates on the mechanical devices. The result of the sensitivity analysis suggests that control strategies to effectively prevent/control the spread of bovine anaplasmosis should focus on these parameters according to their positive or negative effect as seen from the sensitivity index. Following the results of the sensitivity analysis, three control strategies were investigated, namely, bovine-culling, safety-control, and universal. In addition to these strategies, three effectiveness levels (low, medium, and high) were considered for each control strategy using the cumulative number of newly infected cases in both juvenile and adult cattle as measure function. The universal strategy (comprising both cattle-culling and safety-control strategies) is only marginally better at reducing the number of infected cattle compare to the safety-control strategy. This result suggests that efforts should be aimed at improving and maintaining good hygiene practices; furthermore, the added benefit of culling infected cows is only minimal and not cost-efficient.

2.
Biomed Mater ; 13(3): 034108, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29411714

RESUMO

In the treatment of severe traumatic brain injury (TBI), decompressive craniectomy is commonly used to remove a large portion of calvarial bone to allow unimpeded brain swelling. Hydrogels have the potential to revolutionize TBI treatment by permitting a single-surgical intervention, remaining pliable during brain swelling, and tuned to regenerate bone after swelling has subsided. With this motivation, our goal is to present a pliable material capable of regenerating calvarial bone across a critical size defect. We therefore proposed the use of a methacrylated solubilized decellularized cartilage (MeSDCC) hydrogel encapsulating synthetic osteogenic particles of hydroxyapatite nanofibers, bioglass microparticles, or added rat bone marrow-derived mesenchymal stem cells (rMSCs) for bone regeneration in critical-size rat calvarial defects. Fibrin hydrogels were employed as a control material for the study. MeSDCC hydrogels exhibited sufficient rheological performance for material placement before crosslinking ([Formula: see text] > 500 Pa), and sufficient compressive moduli post-crosslinking (E > 150 kPa). In vitro experiments suggested increased calcium deposition for cells seeded on the MeSDCC material; however, in vivo bone regeneration was minimal in both MeSDCC and fibrin groups, even with colloidal materials or added rMSCs. Minimal bone regeneration in the MeSDCC test groups may potentially be attributed to cartilage solubilization after decellularization, in which material signals may have degraded from enzymatic treatment. Looking to the future, an improvement in the bioactivity of the material will be crucial to the success of bone regeneration strategies for TBI treatment.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Matriz Extracelular/metabolismo , Hidrogéis/química , Osteogênese/efeitos dos fármacos , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Cartilagem Articular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/química , Durapatita , Feminino , Fibrina/química , Humanos , Técnicas In Vitro , Masculino , Nanofibras , Ratos , Ratos Sprague-Dawley , Regeneração , Reologia , Crânio/efeitos dos fármacos , Solubilidade , Estresse Mecânico , Microtomografia por Raio-X
3.
ACS Biomater Sci Eng ; 3(9): 1955-1963, 2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32793803

RESUMO

Extracellular matrix (ECM) "raw materials" such as demineralized bone matrix (DBM) and cartilage matrix have emerged as leading scaffolding materials for osteochondral regeneration owing to their capacity to facilitate progenitor/resident cell recruitment, infiltration, and differentiation without adding growth factors. Scaffolds comprising synthetic polymers are sturdy yet generally lack cues for guiding cell differentiation. We hypothesized that opposing gradients of decellularized cartilage (DCC) and DBM in polymeric microsphere-based scaffolds would provide superior regeneration compared to polymer-only scaffolds in vivo. Poly(D,L-lactic-co-glycolic acid) (PLGA) microsphere-based scaffolds were fabricated, either with opposing gradients of DCC and DBM encapsulated (GRADIENT) or without DCC and DBM (BLANK control), and implanted into rabbit osteochondral defects in medial femoral condyles. After 12 weeks, gross morphological evaluation showed that the repair tissue in about 30% of the implants was either slightly or significantly depressed, hinting toward rapid polymer degradation in scaffolds from both of the groups. Additionally, no differences were observed in gross morphology of the repair tissue between the BLANK and GRADIENT groups. Mechanical testing revealed no significant differences in model parameter values between the two groups. Histological observations demonstrated that the repair tissue in both of the groups was fibrous in nature with the cells demonstrating notable proliferation and matrix deposition activity. No adverse inflammatory response was observed in any of the implants from the two groups. Overall, the results emphasize the need to improve the technology in terms of altering the DBM and DCC concentrations, and tailoring the polymer degradation to these concentrations.

4.
Biomed Mater ; 11(2): 025020, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27097554

RESUMO

Tracheal stenosis can become a fatal condition, and current treatments include augmentation of the airway with autologous tissue. A tissue-engineered approach would not require a donor source, while providing an implant that meets both surgeons' and patients' needs. A fibrous, polymeric scaffold organized in gradient bilayers of polycaprolactone (PCL) and poly-lactic-co-glycolic acid (PLGA) with 3D printed structural ring supports, inspired by the native trachea rings, could meet this need. The purpose of the current study was to characterize the tracheal scaffolds with mechanical testing models to determine the design most suitable for maintaining a patent airway. Degradation over 12 weeks revealed that scaffolds with the 3D printed rings had superior properties in tensile and radial compression, with at least a three fold improvement and 8.5-fold improvement, respectively, relative to the other scaffold groups. The ringed scaffolds produced tensile moduli, radial compressive forces, and burst pressures similar to or exceeding physiological forces and native tissue data. Scaffolds with a thicker PCL component had better suture retention and tube flattening recovery properties, with the monolayer of PCL (PCL-only group) exhibiting a 2.3-fold increase in suture retention strength (SRS). Tracheal scaffolds with ring reinforcements have improved mechanical properties, while the fibrous component increased porosity and cell infiltration potential. These scaffolds may be used to treat various trachea defects (patch or circumferential) and have the potential to be employed in other tissue engineering applications.


Assuntos
Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais , Traqueia/cirurgia , Materiais Biocompatíveis/química , Fenômenos Biomecânicos , Humanos , Ácido Láctico/química , Teste de Materiais , Microscopia Eletrônica de Varredura , Poliésteres/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Porosidade , Alicerces Teciduais/química , Traqueia/anatomia & histologia , Traqueia/fisiologia , Estenose Traqueal/cirurgia , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...