Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(12): e202318417, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38261257

RESUMO

Benzo-fused nitrogen heterocycles are common features of bioactive molecules, and the enantioselective synthesis of their substituted analogues is an important goal. In this paper we demonstrate a practical and mechanistically intriguing approach to the enantioselective synthesis of 1-arylbenzazepines and their analogues. The reaction sequence starts with an asymmetric migratory ring expansion of indoline, tetrahydroquinoline, or tetrahydrobenzazepine ureas on treatment with a chiral lithium amide base. Treatment of the ring-expanded ureas with acid triggers a two-atom ring contraction-an 'azatropic shift' in which one urea nitrogen displaces the other-with almost complete retention of stereochemistry. Aminolysis of the urea products provides enantioenriched 1-aryl-tetrahydrobenzazepine derivatives and their congeners, including an analogue of an intermediate in the synthesis of the drug solifenacin. Deuteration, in situ IR, and DFT studies provide evidence for the mechanisms of the reaction steps.

2.
J Am Chem Soc ; 145(34): 19030-19041, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37594473

RESUMO

Cyclic triureas derived from 1,4,7-triazacyclononane (TACN) were synthesized; X-ray crystallography showed a chiral bowl-like conformation with each urea hydrogen-bonded to its neighbor with uniform directionality, forming a "cyclochiral" closed loop of hydrogen bonds. Variable-temperature 1H NMR, 1H-1H exchange spectroscopy, Eyring analysis, computational modeling, and studies in various solvents revealed that cyclochirality is dynamic (ΔG‡25°C = 63-71 kJ mol-1 in noncoordinating solvents), exchanging between enantiomers by two mechanisms: bowl inversion and directionality reversal, with the former subject to a slightly smaller enantiomerization barrier. The enantiomerization rate substantially increased in the presence of hydrogen-bonding solvents. Population of only one of the two cyclochiral hydrogen-bond directionalities could be induced by annulating one ethylene bridge with a trans-cyclohexane. Alternatively, enantiomerization could be inhibited by annulating one ethylene bridge with a cis-cyclohexane (preventing bowl inversion) and replacing one urea function with a formamide (preventing directionality reversal). Combining these structural modifications resulted in an enantiomerization barrier of ΔG‡25°C = 93 kJ mol-1, furnishing a planar-chiral, atropisomeric bowl-shaped structure whose stereochemical stability arises solely from its hydrogen-bonding network.

3.
Org Biomol Chem ; 21(29): 5939-5943, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37436098

RESUMO

The C-H bond of a difluoroacetamide group, acidified by two adjacent fluorine atoms, could in principle provide conformational organisation for foldamers based on C-H⋯O hydrogen bonds. We find that in model oligomeric systems, this weak hydrogen bond leads only to partial organisation of the secondary structure, with the conformational preference of the difluoroacetamide groups being predominantly governed by dipole stabilisation.

4.
Chem Sci ; 13(44): 13153-13159, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36425488

RESUMO

Ethylene-bridged oligoureas are dynamic foldamers in which the polarity of a coherent chain of intramolecular hydrogen bonds may be controlled by intra- or intermolecular interactions with hydrogen-bond donors or acceptors. In this paper, we describe the way that supramolecular interactions between ethylene-bridged oligoureas bearing a 3,5-bis(trifluoromethyl)phenylurea (BTMP) terminus leads to higher-order structures both in the crystalline state and in solution. The oligoureas self-assemble by head-to-tail hydrogen bonding interactions to form either supramolecular 'nanorings' with cyclic hydrogen bond chain directionality, or supramolecular helical chains of hydrogen bonds. The self-assembly process features a cascade of cooperative positive allostery, in which each intermolecular hydrogen bond formation at the BTMP terminus switches the native hydrogen bond chain directionality of monomers, favouring further assembly. Monomers with a benzyl urea terminus self-assemble into nanorings, whereas monomers with a N-ethyl urea terminus form helical chains. In the crystal state, parallel helices have identical handedness and polarity, whereas antiparallel helices have opposite handedness. The overall dipole moment of crystals is zero due to the antiparallel arrangements of local dipoles in the crystal packing. Supramolecular interactions in solution were also examined by VT and DOSY NMR spectroscopy, up to the point of crystal formation. The size of higher aggregates in dichloromethane was estimated by their hydrodynamic radius. The relative orientation of the monomers within the aggregates, determined by 2D ROESY NMR, was the same as in the crystals, where syn-orientations lead to the formation of rings and anti-orientations result in chains. Overall, the switch of hydrogen bond polarity propagates intermolecularly in crystal and solution states, constituting an example of intermolecular communication within supramolecular polymers.

5.
Angew Chem Int Ed Engl ; 60(49): 25832-25838, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34585835

RESUMO

The weak noncovalent interactions and flexibility of ligands play a key role in enantioselective metal-catalyzed reactions. In transition metal complexes and their catalytic applications, the experimental assessment and the design of key interactions is as difficult as the prediction of the enantioselectivities, especially for flexible, privileged ligands such as chiral phosphoramidites. Therefore, the interligand interactions in cis-PdII L2 Cl2 phosphoramidite complexes were investigated by NMR spectroscopy and computations. We were able to induce a strong conformational preference by breaking the symmetry of the C2 -symmetric side chain of one of the ligands, and shift the equilibrium between hetero- and homocomplexes towards heterocomplexes because of interligand interactions in the cis-complexes. The modulation of aryl substituents was exploited, along with the solvent effect. The combined CH-π and π-π interactions reveal design patterns for binding and folding of chiral ligands and catalysts.

6.
J Colloid Interface Sci ; 588: 196-208, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33387822

RESUMO

HYPOTHESIS: Synthesis of a new family of polymers having a polydisulfide structure can be conducted from sulfobetaine-based derivative of natural (R)-lipoic acid. A polydisulfide backbone of polymer can be depolymerized by response to external stimuli and sulfobetaine pendant groups ensure the upper critical solution temperature (UCST) behaviour temperatures that can be modulated according to the nature of the solvent and concentration. EXPERIMENTS: Sulfobetaine-bearing polydisulfides were synthesized from dithiolane derivatives and then characterized. UCST behavior of the polymers in water and in mixtures containing different alcohols (methanol, ethanol, isopropanol) was investigated. The regeneration of monomers from the polymers in response to external stimuli was examined using UV-vis and circular dichroism (CD) spectroscopy. Tunable surface wettability were shown on the grafted polymers. FINDINGS: Decreasing polarity and/or increasing alcohol percentage in the water mixtures induced an increase in the cloud points of the polymers in the solutions. Thermoresponsive behaviour were repeatable and fully reversible with negligible hysteresis from aggregate to unimer state. The regeneration of monomers by depolymerization was tunable by temperature and sunlight. A thickness dependence on surface wettability was observed on wafers covalently modified with polydisulfides. This is the first report of sulfobetaine-based polydisulfides showing tunable UCST behavior and surface wettability.

7.
Chem Sci ; 12(46): 15263-15272, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34976346

RESUMO

In ion pairing catalysis, the structures of late intermediates and transition states are key to understanding and further development of the field. Typically, a plethora of transition states is explored computationally. However, especially for ion pairs the access to energetics via computational chemistry is difficult and experimental data is rare. Here, we present for the first time extensive NMR spectroscopic insights about the ternary complex of a catalyst, substrate, and reagent in ion pair catalysis exemplified by chiral Brønsted acid-catalyzed transfer hydrogenation. Quantum chemistry calculations were validated by a large amount of NMR data for the structural and energetic assessment of binary and ternary complexes. In the ternary complexes, the expected catalyst/imine H-bond switches to an unexpected O-H-N structure, not yet observed in the multiple hydrogen-bond donor-acceptor situation such as disulfonimides (DSIs). This arrangement facilitates the hydride transfer from the Hantzsch ester in the transition states. In these reactions with very high isomerization barriers preventing fast pre-equilibration, the reaction barriers from the ternary complex to the transition states determine the enantioselectivity, which deviates from the relative transition state energies. Overall, the weak hydrogen bonding, the hydrogen bond switching and the special geometrical adaptation of substrates in disulfonimide catalyst complexes explain the robustness towards more challenging substrates and show that DSIs have the potential to combine high flexibility and high stereoselectivity.

8.
J Org Chem ; 84(21): 13221-13231, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31550152

RESUMO

In Brønsted acid catalysis, hydrogen bonds play a crucial role for reactivity and selectivity. However, the contribution of weak hydrogen bonds or multiple acceptors has been unclear so far since it is extremely difficult to collect experimental evidence for weak hydrogen bonds. Here, our hydrogen bond and structural access to Brønsted acid/imine complexes was used to analyze BINOL-derived chiral disulfonimide (DSI)/imine complexes. 1H and 15N chemical shifts as well as 1JNH coupling constants revealed for DSI/imine complexes ion pairs with very weak hydrogen bonds. The high acidity of the DSIs leads to a significant weakening of the hydrogen bond as structural anchor. In addition, the five hydrogen bond acceptors of DSI allow an enormous mobility of the imine in the binary DSI complexes. Theoretical calculations predict the hydrogen bonds to oxygen to be energetically less favored; however, their considerable population is corroborated experimentally by NOE and exchange data. Furthermore, an N-alkylimine, which shows excellent reactivity and selectivity in reactions with DSI, reveals an enlarged structural space in complexes with the chiral phosphoric acid TRIP as potential explanation of its reduced reactivity and selectivity. Thus, considering factors such as flexibility and possible hydrogen bond sites is essential for catalyst development in Brønsted acid catalysis.

9.
Chem Sci ; 10(43): 10025-10034, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-32015815

RESUMO

The concept of hydrogen bonding for enhancing substrate binding and controlling selectivity and reactivity is central in catalysis. However, the properties of these key hydrogen bonds and their catalyst-dependent variations are extremely difficult to determine directly by experiments. Here, for the first time the hydrogen bond properties of a whole series of BINOL-derived chiral phosphoric acid (CPA) catalysts in their substrate complexes with various imines were investigated to derive the influence of different 3,3'-substituents on the acidity and reactivity. NMR 1H and 15N chemical shifts and 1 J NH coupling constants of these hydrogen bonds were used to establish an internal acidity scale corroborated by calculations. Deviations from calculated external acidities reveal the importance of intermolecular interactions for this key feature of CPAs. For CPAs with similarly sized binding pockets, a correlation of reactivity and hydrogen bond strengths of the catalyst was found. A catalyst with a very small binding pocket showed significantly reduced reactivities. Therefore, NMR isomerization kinetics, population and chemical shift analyses of binary and ternary complexes as well as reaction kinetics were performed to address the steps of the transfer hydrogenation influencing the overall reaction rate. The results of CPAs with different 3,3'-substituents show a delicate balance between the isomerization and the ternary complex formation to be rate-determining. For CPAs with an identical acidic motif and similar sterics, reactivity and internal acidity correlated inversely. In cases where higher sterical demand within the binary complex hinders the binding of the second substrate, the correlation between acidity and reactivity breaks down.

10.
J Am Chem Soc ; 140(10): 3528-3531, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29494138

RESUMO

Symmetrical oligourea foldamers were made from meso cyclohexane-1,2-diamine and desymmetrised by incorporating terminal functional groups (carbamates, ureas or thioureas) with differing hydrogen-bonding capacities. Irrespective of solvent, the foldamers populate a dynamic equilibrium of two alternative screw-sense conformers whose relative population is determined by the competing hydrogen-bonding properties of the terminal groups, dictating the foldamer's global hydrogen-bond directionality. Intermolecular association of these dynamic foldamers with achiral anionic guests (acetate or phosphate, but not neutral hydrogen-bonding solvents) leads to inversion of the conformational preference, as strong intermolecular hydrogen bonding induces reorganization of the intramolecular hydrogen-bond network. The foldamers behave as a molecular torsion balance whose conformational preference is governed by competing hydrogen-bond pairing.


Assuntos
Simulação de Dinâmica Molecular , Ureia/química , Ligação de Hidrogênio
11.
Molecules ; 20(9): 15500-24, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26343615

RESUMO

Chiral thioureas and squaramides are among the most prominent hydrogen-bond bifunctional organocatalysts now extensively used for various transformations, including aldol, Michael, Mannich and Diels-Alder reactions. More importantly, the experimental and computational study of the mode of activation has begun to attract considerable attention. Various experimental, spectroscopic and calculation methods are now frequently used, often as an integrated approach, to establish the reaction mechanism, the mode of activation or explain the stereochemical outcome of the reaction. This article comprises several case studies, sorted according to the method used in their study. The aim of this review is to give the investigators an overview of the methods currently utilized for mechanistic investigations in hydrogen-bonding organocatalysis.


Assuntos
Amidas/química , Biologia Computacional/métodos , Tioureia/química , Catálise , Ligação de Hidrogênio , Modelos Moleculares , Modelos Teóricos , Estrutura Molecular , Fenômenos de Química Orgânica , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...