Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 361: 142443, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38815811

RESUMO

Contamination of aquatic environments has been steadily increasing due to human activities. The Pacific oyster Crassostrea gigas has been used as a key species in studies assessing the impacts of contaminants on human health and the aquatic biome. In this context, cytochrome P450 (CYPs) play a crucial role in xenobiotic metabolism. In vertebrates many of these CYPs are regulated by nuclear receptors (NRs) and little is known about the NRs role in C. gigas. Particularly, the CgNR5A represents a homologue of SF1 and LRH-1 found in vertebrates. Members of this group can regulate genes of CYPs involved in lipid/steroid metabolism, with their activity regulated by other NR, called as DAX-1, generating a NR complex on DNA response elements (REs). As C. gigas does not exhibit steroid biosynthesis pathways, CgNR5A may play other physiological roles. To clarify this issue, we conducted an in silico investigation of the interaction between CgNR5A and DNA to identify potential C. gigas CYP target genes. Using molecular docking and dynamics simulations of the CgNR5A on DNA molecules, we identified a monomeric interaction with extended REs. This RE was found in the promoter region of 30 CYP genes and also the NR CgDAX. When the upstream regulatory region was analyzed, CYP2C39, CYP3A11, CYP4C21, CYP7A1, CYP17A1, and CYP27C1 were mapped as the main genes regulated by CgNR5A. These identified CYPs belong to families known for their involvement in xenobiotic and lipid/steroid metabolism. Furthermore, we reconstructed a trimeric complex, previously proposed for vertebrates, with CgNR5A:CgDAX and subjected it to molecular dynamics simulations analysis. Heterotrimeric complex remained stable during the simulations, suggesting that CgDAX may modulate CgNR5A transcriptional activity. This study provides insights into the potential physiological processes involving these NRs in the regulation of CYPs associated with xenobiotic and steroid/lipid metabolism.


Assuntos
Crassostrea , Sistema Enzimático do Citocromo P-450 , Receptores Citoplasmáticos e Nucleares , Crassostrea/genética , Animais , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Simulação de Acoplamento Molecular , Regulação da Expressão Gênica , Simulação de Dinâmica Molecular , Xenobióticos/metabolismo
2.
Mar Pollut Bull ; 203: 116426, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692005

RESUMO

Aquatic environments are subject to threats from multiple human activities, particularly through the release of untreated sanitary sewage into the coastal environments. These effluents contain a large group of natural or synthetic compounds referred to as emerging contaminants. Monitoring the types and quantities of toxic substances in the environment, especially complex mixtures, is an exhausting and challenging task. Integrative effect-based tools, such as biomarkers, are recommended for environmental quality monitoring programs. In this study, fish Poecilia vivipara were exposed for 24 and 96 h to raw untreated sewage diluted 33 % (v/v) in order to identify hepatic genes to be used as molecular biomarkers. Through a de novo hepatic transcriptome assembly, using Illumina MiSeq, 54,285 sequences were assembled creating a reference transcriptome for this guppy species. Transcripts involved in biotransformation systems, antioxidant defenses, ABC transporters, nuclear and xenobiotic receptors were identified and evaluated by qPCR. Sanitary sewage induced transcriptional changes in AhR, PXR, CYP2K1, CYP3A30, NQO1, UGT1A1, GSTa3, GSTmu, ST1C1, SOD, ABCC1 and SOX9 genes from liver of fish, particularly after 96 h of exposure. Changes in hepatic enzyme activities were also observed. The enzymes showed differences in fish exposed to both periods, while in the gills there was a prevalence of significant results after 96 h. The observed differences were associated to gender and/or to sewage exposure. The obtained results support the use of P. vivipara as sentinel and model organism for ecotoxicological studies and evidence the importance of understanding the differential responses associated to gender.


Assuntos
Antioxidantes , Monitoramento Ambiental , Fígado , Poecilia , Esgotos , Transcriptoma , Poluentes Químicos da Água , Animais , Fígado/metabolismo , Poluentes Químicos da Água/análise , Antioxidantes/metabolismo , Masculino , Feminino
3.
Chemosphere ; 340: 139877, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37619748

RESUMO

The increasing presence of anthropogenic contaminants in aquatic environments poses challenges for species inhabiting contaminated sites. Due to their structural binding characteristics to ligands that inhibit or activate gene transcription, these xenobiotic compounds frequently target the nuclear receptor superfamily. The present work aims to understand the potential interaction between the hormone 17-ß-estradiol, an environmental contaminant, and the nuclear receptors of Crassostrea gigas, the Pacific oyster. This filter-feeding, sessile oyster species is subject to environmental changes and exposure to contaminants. In the Pacific oyster, the estrogen-binding nuclear receptor is not able to bind this hormone as it does in vertebrates. However, another receptor may exhibit responsiveness to estrogen-like molecules and derivatives. We employed high-performance in silico methodologies, including three-dimensional modeling, molecular docking and atomistic molecular dynamics to identify likely binding candidates with the target moecule. Our approach revealed that among the C. gigas nuclear receptor superfamily, candidates with the most favorable interaction with the molecule of interest belonged to the NR1D, NR1H, NR1P, NR2E, NHR42, and NR0B groups. Interestingly, NR1H and NR0B were associated with planktonic/larval life cycle stages, while NR1P, NR2E, and NR0B were associated with sessile/adult life stages. The application of this computational methodological strategy demonstrated high performance in the virtual screening of candidates for binding with the target xenobiotic molecule and can be employed in other studies in the field of ecotoxicology in non-model organisms.


Assuntos
Receptores Citoplasmáticos e Nucleares , Xenobióticos , Animais , Simulação de Acoplamento Molecular , Estrogênios , Estradiol
4.
Chemosphere ; 311(Pt 1): 136985, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36306960

RESUMO

Oysters are frequently used as sentinel organisms for monitoring effects of contaminants due to their sessile, filtering habits and bioaccumulation capacity. These animals can show elevated body burden of contaminants, such as pyrene (PYR). PYR can be toxic at a molecular level until the whole oyster, which can show reproductive and behavioral changes. Considering that biologic parameters, such as gender or reproductive stage can interfere in the toxic effects elicited by contaminants uptake, the aim of this study was to evaluate some molecular and histological responses in females and males of oyster Crassostrea gasar exposed to PYR (0.25 and 0.5 µM) for 24 h at the pre-spawning stage. PYR concentrations were analyzed in water and in tissues of female and male oysters. Gene transcripts related to biotransformation (CYP3475C, CYP2-like, CYP2AU1, CYP356A, GSTO-like, GSTM-like, SULT-like), stress (HSP70), and reproduction (Vitellogenin, Glycoprotein) were quantified in gills. In addition, histological analysis and histo-localization of CYP2AU1 mRNA transcripts in gills, mantle and digestive diverticulum were carried out. Females and males in pre-spawning stage bioconcentrated PYR in their tissues. Males were more sensitive to PYR exposure. CYP2AU1 transcripts were higher in males (p < 0.05), as well as tubular atrophy was observed only in males exposed to PYR (p < 0.05). As expected, vitellogenin transcripts were lower in males (p < 0.05). Given these results, it is suggested that levels of CYP2AU1 be a good biomarker of exposure to PYR in oyster C. gasar and that it is important to consider the gender for the interpretation of biomarker responses.


Assuntos
Crassostrea , Poluentes Químicos da Água , Feminino , Animais , Masculino , Crassostrea/metabolismo , Vitelogeninas , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Pirenos/toxicidade , Biomarcadores
5.
Aquat Toxicol ; 226: 105565, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32682195

RESUMO

Pyrene (PYR) and fluorene (FLU) are among the sixteen priority Polycyclic Aromatic Hydrocarbons (PAH) of the United States Environmental Protection Agency and are both frequently detected in contaminated sites. Due to the importance of bivalve mollusks in biomonitoring programs and the scarce information on the biotransformation system in these organisms, the aim of this study was to investigate the effect of PYR and FLU at the transcriptional level and the enzymatic activities of some biotransformation systems in the Pacific oyster Crassostrea gigas, and to evaluate the histological effects in their soft tissues. Oysters C. gigas were exposed for 24 h and 96 h to PYR (0.25 and 0.5 µM) and FLU (0.6 and 1.2 µM). After exposure, transcript levels of cytochrome P450 coding genes (CYP1-like, CYP2-like, CYP2AU2, CYP356A1, CYP17α-like), glutathione S tranferase genes (omega GSTO-like and microsomal, MGST-like) and sulfotransferase gene (SULT-like), and the activity of ethoxyresorufin O-deethylase (EROD), Glutathione S-transferase (GST) and microssomal GST (MGST) were evaluated in gills. Histologic changes were also evaluated after the exposure period. PYR and FLU bioconcentrated in oyster soft tissues. The half-life time of PYR in water was lower than fluorene, which is in accordance to the higher lipophilicity and bioconcentration of the former. EROD activity was below the limit of detection in all oysters exposed for 96 h to PYR and FLU. The reproductive stage of the oysters exposed to PYR was post-spawn. Exposure to PYR caused tubular atrophy in digestive diverticula, but had no effect on transcript levels of biotransformation genes. However, the organisms exposed for 96 h to PYR 0.5 µM showed higher MGST activity, suggesting a protective role against oxidative stress in gills of oysters under higher levels of PYR in the tissues. Increased number of mucous cells in mantle were observed in oysters exposed to the higher FLU concentration, suggesting a defense mechanisms. Oysters exposed for 24 h to FLU 1.2 µM were in the ripe stage of gonadal development and showed higher transcript levels of CYP2AU2, GSTO-like and SULT-like genes, suggesting a role in the FLU biotransformation. In addition, after 96 h of exposure to FLU there was a significant increase of mucous cells in the mantle of oysters but no effect was observed on the EROD, total GST and MGST activities. These results suggest that PAH have different effects on transcript levels of biotransformation genes and enzyme activities, however these differences could also be related to the reproductive stage.


Assuntos
Crassostrea/efeitos dos fármacos , Fluorenos/toxicidade , Pirenos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Biotransformação/efeitos dos fármacos , Crassostrea/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Fluorenos/metabolismo , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Glutationa Transferase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pirenos/metabolismo , Poluentes Químicos da Água/metabolismo
6.
Aquat Toxicol ; 216: 105318, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31590133

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are among the main contaminants in aquatic environments. PAHs can affect organisms due to their carcinogenic, mutagenic and/or teratogenic characteristics. Depending on the PAHs, concentration, and period of exposure, biological damage can occur leading to histopathologic alterations. This study aimed to evaluate the molecular, biochemical and histological responses of the oyster Crassostrea gasar exposed to pyrene (0.25 and 0.5 µM) and fluorene (0.6 and 1.2 µM), after exposure for 24 and 96 h. Concentrations of both PAHs were quantified in the water and in oyster tissues. Transcript levels of phase I (CYP3475C1, CYP2-like, CYP2AU1 and CYP356A) and phase II (GSTO-like, MGST-like and SULT-like) biotransformation-related genes and the activities of ethoxyresorufin-O-deethylase (EROD), total and microsomal glutathione S-transferase (GST and MGST) were evaluated in the gills. Also, histological changes and localization of mRNA transcripts CYP2AU1 in gills, mantle, and digestive diverticula were evaluated. Both PAHs accumulated in oyster tissues. Pyrene half-life in water was significantly lower than fluorene. Transcript levels of all genes were higher in oysters exposed to of pyrene 0.5 µM (24 h). Only CYP2AU1 gene was up-regulated by fluorene exposure. EROD and MGST activities were higher in oysters exposed to pyrene. Tubular atrophy in the digestive diverticula and an increased number of mucous cells in the mantle were observed in oysters exposed to pyrene. CYP2AU1 transcripts were observed in different tissues of pyrene-exposed oysters. A significant correlation was observed between tubular atrophy and the CYP2AU1 hybridization signal in oysters exposed to pyrene, suggesting the sensibility of the species to this PAH. These results suggest an important role of biotransformation-related genes and enzymes and tissue alterations associated to pyrene metabolism but not fluorene. In addition, it reinforces the role of CYP2AU1 gene in the biotransformation process of PAHs in the gills of C. gasar.


Assuntos
Crassostrea/citologia , Crassostrea/genética , Fluorenos/toxicidade , Pirenos/toxicidade , Animais , Biotransformação/efeitos dos fármacos , Crassostrea/efeitos dos fármacos , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Sistema Digestório/efeitos dos fármacos , Fluorescência , Regulação da Expressão Gênica/efeitos dos fármacos , Brânquias/efeitos dos fármacos , Brânquias/enzimologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Poluentes Químicos da Água/toxicidade
7.
Mar Pollut Bull ; 135: 110-118, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30301007

RESUMO

Biochemical and molecular responses were evaluated in oysters Crassostrea brasiliana collected from three oyster farms, at Guaratuba Bay, southern Brazil, forming a pollutant gradient: Farm 1 (reference site - farther from the urban area), Farm 2 (intermediate site) and Farm 3 (nearest to the urban area). Oxidative stress markers, DNA damage and transcript levels of CYP2AU1, CYP2-like1, CYP2-like2, SULT-like, GPx-like, SOD-like, CAT-like, GSTmicrosomal-like, GSTomega-like, FABP-like and ALAd-like genes were analyzed in the gills. The levels of polycyclic aromatic hydrocarbons, linear alkylbenzenes and polychlorinated biphenyls were also evaluated in the soft tissues of the oysters and in the sediment of the Farms. Higher GSTomega-like, CYP2AU1 and FABP-like transcript levels, GR and G6PDH activities and lipid peroxidation levels were observed in oysters from Farms 2 and 3, suggesting pollutant effects on oysters. Alterations in oxidative stress markers also suggest a response against a prooxidant condition in C. brasiliana due to pollutant effects.


Assuntos
Aquicultura/métodos , Crassostrea/fisiologia , Biomarcadores Ambientais , Poluentes Químicos da Água/análise , Animais , Brasil , Crassostrea/química , Crassostrea/efeitos dos fármacos , Ecotoxicologia/métodos , Sedimentos Geológicos/análise , Brânquias/química , Brânquias/efeitos dos fármacos , Brânquias/fisiologia , Inativação Metabólica/efeitos dos fármacos , Inativação Metabólica/genética , Peroxidação de Lipídeos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Proteínas/genética
8.
Chemosphere ; 209: 307-318, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29933167

RESUMO

Exposure of aquatic organisms to polycyclic aromatic hydrocarbons (PAH), such as phenanthrene (PHE), may increase the production of reactive oxygen species (ROS) and cause changes in the biotransformation systems. In addition, changes in water temperature can cause adverse effects in the organisms. Estuarine species, like the oyster Crassostrea brasiliana, can adapt and tolerate temperature variation. To evaluate the influence of temperature on biological responses of C. brasiliana exposed to PHE, oysters were maintained at three temperatures (18, 24 and 32 °C) for 15 days and co-exposed afterwards to 100 µg.L-1 of PHE for 24 and 96 h. Levels of PHE in the water and oyster tissues were determined, respectively after 24 and 96 h. In addition, thermal stress, biotransformation and oxidative stress-related genes were analyzed in oyster gills, together with the activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferases (GST) and levels of lipid peroxidation. Oyster accumulated significant levels of PHE. HSP70-like transcripts were affected by PHE exposure only at 32 °C. Transcript levels of cytochrome P450 isoforms (CYP2-like2 and CYP2AU1) were down-regulated in oysters exposed to PHE for 24 h at 32 °C. GSTΩ-like transcript levels were also down-regulated in the PHE-exposed group at 32 °C. After 96 h, CYP2-like2 transcripts were higher in the PHE exposed groups at 32 °C. Oysters kept at 18 °C showed higher levels of SOD-like transcripts, together with higher GST, GPx and G6PDH activities, associated to lower levels of lipoperoxidation. In general the biological responses evaluated were more affected by temperature, than by co-exposure to PHE.


Assuntos
Crassostrea/química , Fenantrenos/efeitos adversos , Poluentes Químicos da Água/metabolismo , Animais , Temperatura
9.
Sci Rep ; 7: 46486, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28429758

RESUMO

Intracellular lipid binding proteins (iLBPs) play a role in the transport and cellular uptake of fatty acids and gene expression regulation. The aim of this work was to characterize the iLBP gene family of the Pacific oyster Crassostrea gigas, one of the most cultivated marine bivalves in the world, using bioinformatics and molecular biology approaches. A total of 26 different iLBPs transcripts were identified in the Pacific oyster genome, including alternative splicing and gene duplication events. The oyster iLBP gene family seems to be more expanded than in other invertebrates. Furthermore, 3D structural modeling and molecular docking analysis mapped the main amino acids involved in ligand interactions, and comparisons to available protein structures from vertebrate families revealed new binding cavities. Ten different CgiLBPs were analyzed by quantitative PCR in various tissues of C. gigas, which suggested differential prevalent gene expression of CgiLBPs among tissue groups. The data indicate a wider repertoire of iLBPs in labial palps, a food-sorting tissue. The different gene transcription profiles and reported docking systems suggest that the iLBPs are a non-generalist ligand binding protein family with specific functions.


Assuntos
Processamento Alternativo , Proteínas de Transporte , Crassostrea , Duplicação Gênica , Simulação de Acoplamento Molecular , Família Multigênica , Animais , Proteínas de Transporte/biossíntese , Proteínas de Transporte/química , Proteínas de Transporte/genética , Crassostrea/química , Crassostrea/genética , Crassostrea/metabolismo , Metabolismo dos Lipídeos/fisiologia
10.
Environ Toxicol Chem ; 36(8): 2190-2198, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28160493

RESUMO

Bivalves show remarkable plasticity to environmental changes and have been proposed as sentinel organisms in biomonitoring. Studies related to transcriptional analysis using quantitative real-time polymerase chain reaction (qRT-PCR) in these organisms have notably increased, imposing a need to identify and validate adequate reference genes for an accurate and reliable analysis. In the present study, 9 reference genes were selected from transcriptome data of Crassostrea brasiliana to identify their suitability as qRT-PCR normalizer genes. The transcriptional patterns were analyzed in gills of oysters under 3 different conditions: different temperatures (18, 24, or 32 °C) and phenanthrene (100 µg L-1 ) combined exposure; different salinities (10, 25, or 35‰) and phenanthrene combined exposure; and 10% of diesel fuel water-accommodated fraction (diesel-WAF) exposure. Reference gene stability was calculated using 5 algorithms (geNorm, NormFinder, BestKeeper, ΔCt, RefFinder). Transcripts of ankyrin-like (ANK), glyceraldehyde 3-phosphate dehydrogenase-like (GAPDH), and α-tubulin-like (TUBA) genes showed minor changes in different temperature/phenanthrene treatment. Transcripts of ANK, ß-actin-like, and ß-tubulin-like genes showed better stability at salinity/phenanthrene treatment, and ANK, TUBA, and 28S ribosomal protein-like genes showed the most stable transcription pattern in oysters exposed to diesel-WAF exposure. The present study constitutes the first systematic analysis of reference gene selection for qRT-PCR normalization in C. brasiliana. These genes could be employed in studies using qRT-PCR analysis under similar experimental conditions. Environ Toxicol Chem 2017;36:2190-2198. © 2017 SETAC.


Assuntos
Crassostrea , Monitoramento Ambiental/métodos , Transcriptoma/genética , Poluentes Químicos da Água/toxicidade , Animais , Anquirinas/genética , Crassostrea/efeitos dos fármacos , Crassostrea/genética , Gasolina/toxicidade , Perfilação da Expressão Gênica , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/genética , Fenantrenos/toxicidade , Reação em Cadeia da Polimerase em Tempo Real , Padrões de Referência , Salinidade , Temperatura , Transcriptoma/efeitos dos fármacos , Tubulina (Proteína)/genética
11.
Aquat Toxicol ; 183: 94-103, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28040644

RESUMO

Euryhaline animals from estuaries, such as the oyster Crassostrea brasiliana, show physiological mechanisms of adaptation to tolerate salinity changes. These ecosystems receive constant input of xenobiotics from urban areas, including polycyclic aromatic hydrocarbons (PAHs), such as phenanthrene (PHE). In order to understand the influence of salinity on the molecular responses of C. brasiliana exposed to PHE, oysters were acclimatized to different salinities (35, 25 and 10) for 15days and then exposed to 100µgL-1 PHE for 24h and 96h. Control groups were kept at the same salinities without PHE. Oysters were sampled for chemical analysis and the gills were excised for mRNA quantification by qPCR. Transcript levels of different genes were measured, including some involved in oxidative stress pathways, phases I and II of the xenobiotic biotransformation systems, amino acid metabolism, fatty acid metabolism and aryl hydrocarbon receptor nuclear translocator putative gene. Higher transcript levels of Sulfotransferase-like gene (SULT-like) were observed in oysters exposed to PHE at salinity 10 compared to control (24h and 96h); cytochrome P450 isoforms (CYP2AU1, CYP2-like1) were more elevated in oysters exposed for 24h and CYP2-like2 after 96h of oysters exposed to PHE at salinity 10 compared to control. These results are probably associated to an enhanced Phase I biotransformation activity required for PHE detoxification under hyposmotic stress. Higher transcript levels of CAT-like, SOD-like, GSTm-like (96h) and GSTΩ-like (24h) in oysters kept at salinity 10 compared to organisms at salinities 25 and/or 35 are possibly related to enhaced ROS production. The transcription of these genes were not affected by PHE exposure. Amino acid metabolism-related genes (GAD-like (24h), GLYT-like, ARG-like (96h) and TAUT-like at 24h and 96h) also showed different transcription levels among organisms exposed to different salinities, suggesting their important role for oyster salinity adaptation, which is not affected by exposure to these levels of PHE.


Assuntos
Crassostrea/efeitos dos fármacos , Fenantrenos/toxicidade , Salinidade , Poluentes Químicos da Água/toxicidade , Animais , Biotransformação , Crassostrea/genética , Sistema Enzimático do Citocromo P-450/genética , Estuários , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Transcrição Gênica/efeitos dos fármacos , Xenobióticos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...